The Mathematical Model of Reflection and Refraction of the Longitudinal Shock Wave at the Interface of Two Nonlinear Elastic Media

Article Preview

Abstract:

The results of mathematical modeling of the dynamic interaction of a plane longitudinal shock wave with a plane interface between two isotropic nonlinear elastic materials are presented. The mechanical properties of deformable solid are given by the elastic Murnaghan model. The dynamic processes of deformations distribution are studied in the framework of the theory of singular surfaces. The numerical solutions of the corresponding self-similar problem with strong and weak deformations discontinuities in the reflected and refracted wave packages have been obtained on the basis of the developed scheme of computational experiment.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

51-55

Citation:

Online since:

February 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A.I. Lurie, Nonlinear theory of elasticity, Elsevier Science Publisher B.V., North-Holland, Amsterdam, (1990).

Google Scholar

[2] A.A. Burenin, L.V. Kovtanyuk, M.V. Polonik, The formation of a one-dimensional residual stress field in the medium of a cylindrical defect in the continuity of an elastoplastic medium, Journal of Applied Mathematics and Mechanics. 67 (2003).

DOI: 10.1016/s0021-8928(03)90014-1

Google Scholar

[3] E.V. Murashkin, M.V. Polonik, Development of approaches to the creep process modeling under large deformations, Applied Mechanics and Materials. 249-250 (2013) 833-837. DOI: 10. 4028/www. scientific. net/AMM. 249-250. 833.

DOI: 10.4028/www.scientific.net/amm.249-250.833

Google Scholar

[4] A.G. Kulikovskii, E.I. Sveshnikova, Nonlinear Waves in Elastic Media, CRC Press, (1995).

Google Scholar

[5] A.A. Burenin, O.V. Dudko, D.A. Potianikhin, On the collision of two elastic solids with plane boundaries, Computation Continuum Mechanics. 6(2) (2013) 157-167. DOI: 10. 7242/1999-6691/2013. 6. 2. 19.

DOI: 10.7242/1999-6691/2013.6.2.19

Google Scholar

[6] Dmitrii A. Potianikhin, Olga V. Dudko. Self-similar reflection of longitudinal shock wave from free boundary in elastic medium, Advanced Materials Research, 1040 (2014) 652-657. DOI: 10. 4028/www. scientific. net/AMR. 1040. 652.

DOI: 10.4028/www.scientific.net/amr.1040.652

Google Scholar

[7] Bland D.R., Nonlinear Dynamic Elasticity, Blaisdell, Waltham, (1969).

Google Scholar

[8] Bykovtsev G.I., Ivlev D.D., Theory of Plasticity, Dalnauka, Vladivostok, 1998 (in Russian).

Google Scholar

[9] A.A. Burenin, A.D. Chemyshov, Shock waves in an isotropic elastic space, Journal of Applied Mathematics and Mechanics, 42(4) (1978) 758-765. DOI: 10. 1016/0021-8928(78)90019-9.

DOI: 10.1016/0021-8928(78)90019-9

Google Scholar

[10] I.O. Osipov, Generalization of the method of functionally invariant solutions for dynamic problems of the plane theory of elasticity of anisotropic media, 64(6) (2000) 967-980. DOI: 10. 1016/S0021-8928(00)00128-3.

DOI: 10.1016/s0021-8928(00)00128-3

Google Scholar

[11] A.P. Babichev, N.A. Babushkina, A.M. Bratkovsky and others, Physical values: Catalog, Energoatomizdat, Moscow, 1991 (in Russian).

Google Scholar

[12] L.K. Zarembo, V.A. Krasil'nikov, Nonlinear phenomena in the propagation of elastic waves in solids, Soviet Physics Uspekhi. 13(6) (1971) 778-797. DOI: 10. 1070/PU1971v013n06ABEH004281.

DOI: 10.1070/pu1971v013n06abeh004281

Google Scholar