[1]
G.I. Marchuk, Mathematical Models in Environmental Problems. Nauka, Moscow, 1982, 319 p.
Google Scholar
[2]
A.A. Samarskii and P.N. Vabishevich, Numerical Methods for Inverse Problems in Mathematical Physics, Editorial URSS, Moscow, (2004).
Google Scholar
[3]
G.V. Alekseev and D.A. Tereshko, Analysis and Optimization in Viscous Fluid Hydrodynamics, Dal'nauka, Vladivostok, (2008).
Google Scholar
[4]
G.V. Alekseev, D.A. Tereshko, Extremum Problems of Boundary Control for Stationary Thermal Convection Equations, J. Appl. Mech. Tecn. Phys. 4 (2010) 72-84.
Google Scholar
[5]
G.V. Alekseev and D. A. Tereshko, Two_Parameter Extremum Problems of Boundary Control for Stationary Thermal Convection Equations, " Comput. Math. Math. Phys. 51 (2011) 1539–1557.
DOI: 10.1134/s096554251109003x
Google Scholar
[6]
G.V. Alekseev, I.S. Vakhitov, O.V. Soboleva, Stability Estimates in Problems of Identification for the Equation of Convection-diffusions-reactions, Comput. Math. and Math. Phys. 52 (2012) 1635-1649.
DOI: 10.1134/s0965542512120032
Google Scholar
[7]
G.V. Alekseev, M. A. Shepelov, On Stability of Solutions of the Coefficient Inverse Extremal Problems for the Stationary Convection–Diffusion Equation, J. of Applied and Industrial Mathematics, 7 (1), (2013) 1–14.
DOI: 10.1134/s1990478913010018
Google Scholar
[8]
V.T. Borukhov, G.M. Zayats, V.A. Tsurko, Identification of a Thermal Conductivity Coefficient of Nonlinear Parabolic Equation With Disturbed Input Data, Informatics. 19 (2008) 29–39.
Google Scholar
[9]
P.N. Vabishevich, A. Yu. Denisenko, The Numerical Solution of a Coefficient Inverse Problem For the Nonlinear Parabolic Equation, Mathematical modelling. I (8) (1989) 116-126.
Google Scholar
[10]
A.N. Naumov, On the Decision of Inverse Coefficient Problem for Filtration Equation. Moscow, 2006, 29 p.
Google Scholar
[11]
Y.H. OU, A. Hasanov, Z.H. Liu, Inverse Coefficient Problems for Nonlinear Parabolic Differential Equations, Acta Mathematica Sinica, English Series. Oct. 24 (10) (2008) 1617–1624.
DOI: 10.1007/s10114-008-6384-0
Google Scholar
[12]
Alfio Borzi, Multigrid Methods for Parabolic Distributed Optimal Control Problems, J. of Comp. and Appl. Math. 157 (2003) 365–382.
Google Scholar
[13]
G. V Alekseev, Cloaking of Material Objects by Controlling the Impedance Boundary Condition for Maxwell's Equations, Dokl. Phys. 58 (2013) 482-486.
DOI: 10.1134/s1028335813110025
Google Scholar
[14]
G.V. Alekseev, Cloaking Via Impedance Boundary Condition for 2-D Helmholtz Equation, Appl. Anal. 93 (2014) 254-268.
DOI: 10.1080/00036811.2013.768340
Google Scholar
[15]
G.V. Alekseev, V.A. Levin, Optimization Method of Searching Parameters of an Inhomoge-neous Liquid Medium in the Acoustic Cloaking Problem, Dokl. Phys. 59 (2014) 89-93.
DOI: 10.1134/s1028335814020013
Google Scholar
[16]
G.V. Alekseev, Stability Estimates in the Problem of Cloaking Material Bodies for Maxwell's Equations, Computational Mathematics and Mathematical Physics, 54 (12) (2014) 1788–1803.
DOI: 10.1134/s0965542514120069
Google Scholar
[17]
Yu. Yu. Fershalov, Technique for Physical Simulation of Gasodynamics Processes in the Turbomachine Flow Passages, Russ. Aeron. 55 (2012) 424-429.
DOI: 10.3103/s1068799812040186
Google Scholar
[18]
M. Yu. Fershalov, A. Yu. Fershalov, Yu. Ya. Fershalov, Calculation of Reactivity Degree for Axial Lowaccount Turbines With Small Emergence Angles on Nozzle Devices. Advanced material research. 341 (2014) 915-916.
DOI: 10.4028/www.scientific.net/amr.915-916.341
Google Scholar
[19]
N.S. Bahvalov, N.P. Jedkov, G,M. Kobelkov, Numerical Methods, BINOM, Moscov, (2003).
Google Scholar
[20]
N.V. Muzylyov, About Uniqueness of Determination of Temperature Dependence of Heatphysical Characteristics in Piecewise and Monotonous Processes, Inj. phis. J., 49 (6) (1985) 1009-1015.
Google Scholar
[21]
M.V. Klibanov, The Theorem of Uniqueness of Coefficient Inverse Problems of Heat Conductivity With Measurements in Internal Points of a Body, Inj. phis. J., 49 (6) (1985) 1006-1009.
Google Scholar
[22]
A.I. Prilepko, V.V. Solovyov, Theorems of Resolvability and a Method to the Company in the Inverse Problems for the Equations of Parabolic Type Differential Equations, 23 (10) (1987) 1791-1799.
Google Scholar
[23]
A.A. Samarskii and P.N. Vabishevich, Numerical Methods for Inverse Problems in Mathematical Physics, Walter de Gruyter Berlin New York, (2007).
Google Scholar