[1]
Ivlev D.D., The theory of ideal plasticity. M.: Nauka. 1966. 232 p. (In Russian).
Google Scholar
[2]
Bykovtsev G.I., Ivlev D.D., Theory of Plasticity, Dalnauka, Vladivostok, 1998. (In Russian).
Google Scholar
[3]
Ishlinskii A.J., The general theory of plasticity with linear hardening, Ukrainian Mathematical Journal. 6(3) (1954) 314-324. (In Russian).
Google Scholar
[4]
A.A. Ilyushin, Plasticity. M.: Publishing House of the USSR Academy of Sciences, 1963. 272.
Google Scholar
[5]
A.A. Pozdeev, P.V. Trusov, Nyashina YI Large elastoplastic deformation theory, algorithms, applications. M.: Nauka. 1986. 232 p. (In Russian).
Google Scholar
[6]
Burenin A.A., Bykovtsev G.I., Kovtanyuk L.V., On a simple model for elastic-plastic medium at finite deformations, Reports of the RAS. 347(2) (1996) 199-201. (In Russian).
Google Scholar
[7]
E.V. Murashkin, M.V. Polonik, Development of approaches to the creep process modeling under large deformations, Applied Mechanics and Materials. 249-250 (2013) 833-837.
DOI: 10.4028/www.scientific.net/amm.249-250.833
Google Scholar
[8]
Burenin A.A., Kovtanyuk L.V., Goncharova M.V. (Polonik M.V. ), Irreversible deformation of incompressible medium in the vicinity of a spherical cavity under hydrostatic pressure, Izv. RAN, Mechanics of Solids. 4 (1999) 150-156. (In Russian).
Google Scholar
[9]
E. Lee, Elastic-plastic deformation at finite strains, J. Applied Mechanics, 36(1) (1969) 1-6.
Google Scholar
[10]
Levitas V.I., Large elastoplastic deformation of materials at high pressure. Kiev: Nauk. Dumka, 1987. 232 p. (in Russian).
Google Scholar
[11]
Bykovtsev G.I., Shitikov A.V., Finite deformation elastic-plastic media, Reports of the Academy of Sciences of the USSR. 311(1) (1990) 59-62. (In Russian).
Google Scholar
[12]
А.А. Rogovoi, Defining ratios for the final elastic and inelastic deformations, Applied Mechanics and Technical Physics, 46(5) (2005) 138-149.
Google Scholar
[13]
A.D. Chernyshov, Constitutive equations for elastic-plastic body at final deformations, Izv. RAN, Mechanics of Solids, 1 (2000) 120-128.
Google Scholar
[14]
A.A. Burenin, L.V. Kovtanyuk, M.V. Polonik, The possibility of reiterated plastic flow at the overall unloading of an elastoplastic medium, Doklady Physics, 45(12) (2000) 694-696.
DOI: 10.1134/1.1342452
Google Scholar
[15]
M.V. Polonik, E.V. Murashkin, Formation of the Stress Field in the Vicinity of a Single Defect under Shock (Impulse) Loading, 774-776 (2013) 1116-1121.
DOI: 10.4028/www.scientific.net/amr.774-776.1116
Google Scholar
[16]
A.A. Burenin, L.V. Kovtanyuk, E.V. Murashkin, On the residual stresses in the vicinity of a cylindrical discontinuity in a viscoelastoplastic material, Journal of Applied Mechanics and Technical Physics, 47 (2) (2006) 241-248.
DOI: 10.1007/s10808-006-0049-5
Google Scholar
[17]
E.V. Murashkin, M. Polonik, Determination of a Loading Pressure in the Metal Forming by the Given Movements, Advanced Materials Research, 842 (2014) 494-499.
DOI: 10.4028/www.scientific.net/amr.842.494
Google Scholar
[18]
A.A. Burenin, L.V. Kovtanyuk, A.L. Mazelis, The pressing of an elastoviscoplastic material between rigid coaxial cylindrical surfaces, Journal of Applied Mathematics and Mechanics, 70(3) (2006) 437-445.
DOI: 10.1016/j.jappmathmech.2006.07.004
Google Scholar
[19]
A.A. Burenin, L.V. Kovtanyuk, A.S. Ustinovа, Accounting for the elastic properties of a non-Newtonian material under its viscosimetric flow, Journal of Applied Mechanics and Technical Physics, 49(2) (2008) 277-284.
DOI: 10.1007/s10808-008-0038-y
Google Scholar
[20]
A.A. Burenin, O.V. Dudko, A.A. Mantsybora, Propagation of Reversible Deformation in a Medium with Accumulated Irreversible Strains, Journal of Applied Mechanics and Technical Physics, 43(5) (2002) 770-776.
DOI: 10.1023/a:1019808407336
Google Scholar
[21]
M.V. Polonik, E.E. Rogachev, On the stationary flow of an incompressible elastoplastic medium in a spherical diffuser, Sib. Zh. Ind. Mat., 15(2) (2012) 99-106.
Google Scholar