Electrochemical Activity of Methionine at Graphite Electrode Modified with Gold Nanoparticles

Article Preview

Abstract:

The “inverse” cathodic peak of gold nanoparticles is observed in the reaction mixture used to obtain gold nanoparticles HAuCl4:Na3C6H5O7:NaBH4=125:8:1 and accumulation time is 90 s. The conditions in which methionine has the greatest electrochemical activity were determined. They are as follows: the molar ratio of reagents HAuCl4:Na3C6H5O7:NaBH4=125:8:1 and accumulation time is 90 s, 0.1 M NaOH. The mechanism of methionine oxidation is proposed to be on the surface of the graphite electrode modified with gold nanoparticles in 0.1 M NaOH. The determination limit of methionine is 0.7 •10-14 M. The proposed method is simple, sensitive, and does not need toxic substances.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

563-568

Citation:

Online since:

February 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Voet D., Voet J. G, Biochemistry, II edn. Wiley, New York, (1995).

Google Scholar

[2] Hoshi T., Heinemann S. H, Regulation of cell function by methionine oxidation and reduction, J. Physiol. 531 (2001) 1-11.

Google Scholar

[3] Vertelov G.K., Olenin A. Yu., Lisichkin G.V. Use of nanoparticles in the electrochemical analysis of biological samples. J. Anal. Chem. 62 (2004) 903-915.

DOI: 10.1134/s106193480709002x

Google Scholar

[4] Herzog G., Arrigan W.M. Electrochemical strategies for the label-free detection of aminoacids, peptides and proteins. Analyst 132 (2007) 615-632.

DOI: 10.1039/b701472d

Google Scholar

[5] Jeevagan A.J., John S.A. Electrochemical determination of L-methionine using the electropolymerized film of non-peripheral amine substituted Cu (II) phthalocyanine on glassy carbon electrode. Bioelectrochemistry. 85 (2012) 50–55.

DOI: 10.1016/j.bioelechem.2011.11.009

Google Scholar

[6] Welch C.M., Compton R.G. The use of nanoparticles in electroanalysis: a review. Anal. Bioanal. Chem. 384 (2006) 601-619.

DOI: 10.1007/s00216-005-0230-3

Google Scholar

[7] Il'in А. P, Root L.O., Mostovshchikov A.V. The rise of energy accumulated in metal nanopowders. Technical Physics 57 (2012) 1178-1180.

DOI: 10.1134/s1063784212080129

Google Scholar

[8] Korshunov A, Heyrovsky M, Bakardieva S., Btrabec L. Electrolytic processes in various degree of dispersion. Langmuir 23 (2007) 1523-1529.

Google Scholar

[9] Beitollaxi H., Mohadezi A., Ghorbani F. and all. Electrocatalytic measurement of methionine concentration with a carbon nanotube paste electrode modified with benzoylferrocene. Chinese Journal of Catalysis. 34 (2013) 1333-1338.

DOI: 10.1016/s1872-2067(12)60582-8

Google Scholar

[10] Agui L., Manso J., Vanez-Sedeno P. and all. Colloidal-gold cyateamine-modified carbon paste electrodes as suitable electrode materials for the electrochemical determination of sulphur-containing compounds. Application to the determination of methionine. Talanta. 64 (2004).

DOI: 10.1016/j.talanta.2004.05.002

Google Scholar

[11] Perevezentseva D.O., Gorchakov E.V. Voltammetric determination of cysteine at a graphite electrode modified with gold nanoparticles J. of Solid State Electrochem. 16 (2012) 2405-2410.

DOI: 10.1007/s10008-012-1727-2

Google Scholar

[12] Brainina H.Z. Ob obratimih pikah na polayrizacionnih krivih, Electrohimia, 13 (1988) 678-680.

Google Scholar

[13] Korshunov A., Heyrovsky M. Dispersion of silver particles in aqueous solutions visualized by polarography/voltammetry, Electrochimica Acta, 54 (2009) 6264-6268.

DOI: 10.1016/j.electacta.2009.05.084

Google Scholar

[14] Korshunov A., Heyrovsky M. Electrochemical behavior of copper metal core/oxide shell ultra-fine particles on mercury electrodes in aqueous dispersions, J. of Electroanalyt. Chem., 629 (2009), 23-29.

DOI: 10.1016/j.jelechem.2009.01.009

Google Scholar

[15] Korshunov A.V., Yosypchuk B., Heyrovsky M. Voltammetry of aqueous chloroauric acid hanging mercury drop electrode, Collection of Czech. Chem. Communications, 76 (2011) 929-936.

DOI: 10.1135/cccc2011064

Google Scholar

[16] Perevezentseva D.O., Gorchakov E.V., Scirdin K.V. and all. Sposob opredeleniya metionina v modelnih vodnih rastvorah metodom ciclicheskoi voltamperometrii na grafitovom electrode, modificirovanom kolloidnimi nanochasticami zolota. Zayavka na patent № 2015110359 от 23. 03. 15.

Google Scholar