Electrical Properties of Carbon Nanotube-Reinforced Polymer Composites

Article Preview

Abstract:

Novel electrically conductive SWCNT-reinforced composites were studied in this work. Incorporating SWCNT into CB/polymer composites provides lowering the percolation threshold. Adding a small quantity of single-walled carbon nanotubes into CB/polymer composites allows reducing CB content in electrically conductive composites and improving rheological and processing properties.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

569-573

Citation:

Online since:

February 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. -F. Zou, Z. -Z. Yu, Y. -X. Pan, X. -P. Fang, Y. -C. Ou, Conductive mechanism of polymer/graphite conducting composites with low percolation threshold, J. Polym. Sci.: B: Polym. Phys. 40 (2002) 954–963.

DOI: 10.1002/polb.10141

Google Scholar

[2] Y. Xi, A. Yamanaka, Y. Bin, M. Matsuo, Electrical properties of segregated ultrahigh molecular weight polyethylene/multiwalled carbon nanotube composites, J. Appl. Polym. Sci. 105 (2007) 2868–2876.

DOI: 10.1002/app.26282

Google Scholar

[3] J. Bouchet, C. Carrot, J. Guillet, G. Boiteux, G. Seytre, M. Pineri, Conductive composites of UHMWPE and ceramics based on the segregated network concept, Polym. Eng. Sci. 40 (2000) 36–45.

DOI: 10.1002/pen.11137

Google Scholar

[4] J. Sandler, M.S.P. Shaffer, T. Prasse, W. Bauhofer, K. Schulte, A.H. Windle, Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties, Polymer 40 (1999) 5967–5971.

DOI: 10.1016/s0032-3861(99)00166-4

Google Scholar

[5] R.P. Kusy, Influence of particle size ratio on the continuity of aggregates, J. Appl. Phys. 48 (1977) 5301–5305.

DOI: 10.1063/1.323560

Google Scholar

[6] A. Malliaris and D.T. Turner, Influence of particles size on the electrical resistivity of compacted mixtures of polymeric and metallic powders, J. Appl. Phys. 42 (1971) 614–618.

DOI: 10.1063/1.1660071

Google Scholar

[7] J. Feng, C. -M. Chan, Carbon black filled immiscible blends of poly(vinylidene fluoride) and high density polyethylene: Electrical properties and morphology, Polym. Eng. Sci. 38 (1998) 1649–1657.

DOI: 10.1002/pen.10335

Google Scholar

[8] O. Breuer, R. Tchoudakov, M. Markis, A. Siegmann, Electrical properties of structured HIPS/gamma-irradiated UHMWPE/CB blends, Polym. Eng. Sci. 40 (2000) 1015–1024.

DOI: 10.1002/pen.11229

Google Scholar

[9] G. Geuskens, J.L. Gielens, D. Geshef and R. Deltour, The electrical conductivity of polymer blends filled with carbon black, European Polym. J. 23 (1987) 993–995.

DOI: 10.1016/0014-3057(87)90047-4

Google Scholar

[10] F. Gubbels, S. Blacher, E. Vanlathem, R. Jerome, R. Deltour, F. Brouers, P. Teyssie, Design of electrical composites: determining the role of the morphology on the electrical properties of carbon black filled polymer blends, Macromolecules 28 (1995).

DOI: 10.1021/ma00109a030

Google Scholar

[11] J.F. Feller, S. Bruzaud, Y. Grohens, Influence of clay nanofiller on electrical and rheological properties of conductive polymer composite, Materials Letters 58 (2004) 739-745.

DOI: 10.1016/j.matlet.2003.07.010

Google Scholar

[12] L. Liu, J.C. Grunlan, Clay assisted dispersion of carbon nanotubes in conductive epoxy nanocomposites, Adv. Funct. Mater. 17 (2007) 2343–2348.

DOI: 10.1002/adfm.200600785

Google Scholar

[13] S.M. Miriyala, Y.S. Kim, L. Liu, J.C. Grunlan, Segregated network of carbon black in poly(vinyl acetate) latex: Influence of clay on the electrical and mechanical behavior, Marcomol. Chem. Phys. 209 (2008) 2399–2409.

DOI: 10.1002/macp.200800384

Google Scholar

[14] T.J. Moon, J.H. Kim and C.H. Choi, Physical properties and adhesion of the polymer/metal composites, Polymer (Korea) 7 (1983) 380–391.

Google Scholar

[15] K. Levon, A. Margolina and A.Z. Patashinsky, Multiple percolation in conducting polymer blends, Macromolecules 26 (1993) 4061–4063.

DOI: 10.1021/ma00067a054

Google Scholar

[16] J.G. Mallette, A. Marquez, O. Manero, R. Castro-Rodriguez, Carbon black filled PET/PMMA blends: Electrical and morphological studies, Polym. Eng. Sci. 40 (2000) 2273–2278.

DOI: 10.1002/pen.11359

Google Scholar

[17] C. Calberg, S. Blacher, F. Gubbels, F. Brouers, R. Deltour, R. Jerome, Electrical and dielectric properties of carbon black filled co-continuous two-phase polymer blends, J. Phys. D: Appl. Phys. 32 (1999) 1517–1525.

DOI: 10.1088/0022-3727/32/13/313

Google Scholar

[18] A.K. Jonscher, Universal relaxation law, Chelsea Dielectric Press, London (1996).

Google Scholar