Removal of Iron Colloid Substances from Aqueous Solutions Using Pulsed Corona Discharge

Article Preview

Abstract:

Pulsed electric discharge has been used for the removal of iron colloid substances from aqueous solutions. The residual concentration of organic substances in aqueous solution depends on the pulse repetition rate. The maximum decrease in organic substances concentration was observed at the pulse repetition rate of 800 pps. Comparison of the results obtained for iron colloid solutions containing humic substances and solutions of humic subtances with no colloids shows that the highest removal efficiency of organic substances was obtained when no iron and silicon ions were present in the solution. The results of our experiments suggest that pulsed electric discharge treatment for the removal of organic substances from natural waters is more efficient at an after-treatment stage, after precipitation of colloid substances.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

648-652

Citation:

Online since:

February 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. A. Voyno, K.I. Machekhina, L.N. Shiyan, The forming of model colloid system, Adv. Mater. Res. (2014) 266-269.

DOI: 10.4028/www.scientific.net/amr.971-973.266

Google Scholar

[2] L.V. Serikov, E.A. Tropina, L.N. Shiyan, F.H. Frimmel, G. Metreveli, M. Delay, Iron oxidation in different types of groundwater of Western Siberia, J. for Soils and Sedim. (2009) 103-110.

DOI: 10.1007/s11368-009-0069-x

Google Scholar

[3] B. Gu, J. Schmltt, Z. Chen, L. Liang, J. McCarthy, Adsorption and desorption of natural organic matter in iron oxide: mechnisms and models, Environ. Sci. Technol. (1994) 38-46.

DOI: 10.1021/es00050a007

Google Scholar

[4] M. Lehtola, I. Miettinen, M. Keinanen, T. Kekki, O. Laine, A. Hirvonen, T. Vartiainen, P. Martikainen, Microbiology, chemistry and biofilm development in a pilot drinking water distribution system with copper and plastic pipes, Water Research (2004).

DOI: 10.1016/j.watres.2004.06.024

Google Scholar

[5] K.I. Machekhina, L.N. Shiyan, Process of ultra- and nanofiltration for cleaning solutions from iron colloid substances, Adv. Mater. Res. (2014) 342-346.

DOI: 10.4028/www.scientific.net/amr.1040.342

Google Scholar

[6] P. Westerhoff, P. Chao, H. Mash, Reactivity of natural organic matter with aqueous chlorine and bromine, Water Research (2004) 1502-1513.

DOI: 10.1016/j.watres.2003.12.014

Google Scholar

[7] E.M. Svetleishaya, T.E. Mitchenko, I.M. Astrelin, Removal of Natural Orginic Matter by Ultrafiltration, J. of Water Chem. and Technol. (2014) 47-56.

DOI: 10.3103/s1063455x14010044

Google Scholar

[8] J. Ma, G.B. Li, Z.L. Chen, G.R. Xu, G.Q. Cail, Enhanced coagulation of surface waters with high organic content by permanganate preoxidation, Water Sci. and Technol. (2001) 51-61.

DOI: 10.2166/ws.2001.0007

Google Scholar

[9] P. Schmitt, H.E. Taylor, G.R. Aiken, D.A. Roth, F.H. Frimmel, Influence of natural organic matter on the adsorption of metal ions onto clay minerals, Environ. Sci. and Technol. (2002) 2932-2938.

DOI: 10.1021/es010271p

Google Scholar

[10] B.P. Vincent, The effect of adsorbed polymers on dispersion stability, Adv. in Colloid and Interface Sci. (1974) 193-277.

Google Scholar

[11] B. Jiang, J. Zheng, S. Qiu, M. Wu, Q. Zhang, Z. Yan, Q. Xue, Rewiew on electrical plasma technology for wastewater remediation (2014) 348-368.

DOI: 10.1016/j.cej.2013.09.090

Google Scholar

[12] J. Kornev, N. Yavorovsky, S. Preis, M. Khaskelberg, U. Isaev, B. -N. Chen, Generation of active oxidant species by pulsed dielectric barrier discharge in water-air mixtures, Ozone: Sci. and Engineering (2006) 207-215.

DOI: 10.1080/01919510600704957

Google Scholar

[13] L.N. Shiyan, E.A. Tropina, K.I. Machekhina, E.N. Gryaznova, V.V. An, Colloid stability of iron compounds in groundwater of Western Siberia, Springer Plus (2014) 1-7.

DOI: 10.1186/2193-1801-3-260

Google Scholar

[14] Kornev I., Preis S., Gryaznova E., Saprykin F., Khryapov P., Khaskelberg M. and Yavorovskiy N.  Aqueous dissolved oil fraction removed with pulsed corona discharge. Industrial and Engineering Chem. Res. (2014) 7263-7267.

DOI: 10.1021/ie403730q

Google Scholar

[15] K I Machekhina, LN. Shiyan, E N. Tropina, D A. Voyno, Method of removal of colloid iron from groundwater of Western Siberia region by using of carbon dioxide, Proceedings 7th International Forum on Strategic Technology, IFOST 2012 (2012) 94712.

DOI: 10.1109/ifost.2012.6357483

Google Scholar

[16] I.M. Piskarev, I.P. Ivanova, S.V. Trofimova, N.A. Aristova, Formation of active Species in Spark Discharge and their possible use, High Energy Chem. (2012) 343-348.

DOI: 10.1134/s0018143912050050

Google Scholar