Grinding of the Alloy INCONEL 718 and Final Roughness of the Surface

Article Preview

Abstract:

Grinding is currently still an important method for surface finishing. At FPTM JEPU is realized the research, which deals with this issue. There are carried out experiments with grinding various materials under different conditions and then are evaluated the selected components of the surface integrity, which are generally roughness Ra, Rz, Rt and Rmax, material ratio curve (Abbott Firestone curve) and also obtained roudness. This article deals with grinding nickel alloy Inconel 718, when selected cutting grinding conditions were used and subsequently the surface roughnesses Ra, Rz, Rt and Rmax were measured and evaluated.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

212-217

Citation:

Online since:

February 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. Bauer, Obrabeni tezkoobrobitelnych materialu [online]. 2008 [cit. 2014-3-13]. Available at www: http: /www. mmspektrum. com/clanek/obrabeni-tezkoobrobitelnych-materialu. html.

Google Scholar

[2] J. Brychta, R. Cep, M. Sadilek, L. Petrikovska, J. Novakova, Nové směry v progresivním obrábění, Ostrava: VŠB, 2007, 251 pp.

Google Scholar

[3] P. Byrne Turning, milling and grinding processes. London, Arnold, (1996).

Google Scholar

[4] A. Czan, M. Sajgalik, J. Holubjak, K. Kouril, Studying of Cutting Zone When Finishing Titanium Alloy by Application of Multifunction Measuring System. Manufacturing Technology, Vol. 13., No. 4, 2013, pp.428-431.

DOI: 10.21062/ujep/x.2013/a/1213-2489/mt/13/4/428

Google Scholar

[5] F. Holesovsky, M. Novak, Grinding and its influence to ground surface durability. Proceedings of International Conference on Advances in Materials and Processing Technologies, Paris. Publisher: Amer INST Physics, Melville, NY, USA. (2010).

Google Scholar

[6] INCONEL® alloy 718 (UNS N07718) [online]. 2007 [cit. 2014-3-13]. Available at www: http: /www. hpalloy. com/alloys/descriptions/INCONEL718. html.

Google Scholar

[7] INCONEL® alloy 718, company informations, [online]. 2007 [cit. 2014-3-13]. Availavle et www: http: /www. specialmetals. com/documents/Inconel%20alloy%20718. pdf.

Google Scholar

[8] J. Jersák, Vliv dynamickeho vyvazeni brousiciho kotouce na drsnost povrchu obrobenych soucasti, Strojirenska technologie, Vol. 17, No. 1, 2, 2012, pp.27-33.

Google Scholar

[9] O. Jusko, Vyvoj a inovace brousicich nastroju. Strojirenská technologie. Vol. 15, No. 1, 2010, pp.17-22.

Google Scholar

[10] D. Kalincova, Skúšanie mechanických vlastností materiálov - prehlad meracích metód a zariadení. Proceedings Zvysovani efektivnosti vzdelavacieho procesu prostrednictvom inovacnzch prostriedkov, TU vo Zvolene, Zvolen., SK, 2010, pp.13-26.

Google Scholar

[11] K. Kocman, Optimalizace dokoncovacich operaci vyrobnich procesu, Strojirenska technologie, Vol. 17, No. 3, 2012, pp.164-169.

Google Scholar

[12] K. Kouril, R. Cep, A. Janasek, A. Kriz, D. Stancekova, Surface integrity at reaming operation by MT3 head. Manufacturing Technology, Vol. 14, No. 2, 2014, pp.193-199.

DOI: 10.21062/ujep/x.2014/a/1213-2489/mt/14/2/193

Google Scholar

[13] I. D. Marinescu et all, Handbook of Machining with Grinding wheels, Boca Raton, CRC Press, 2007, 592 pp.

Google Scholar

[14] J. N. Maslov, Teorie brousení kovu. Praha: SNTL, 284 pp., (1979).

Google Scholar

[15] M. Novak, Surface quality of hardened steels after grinding, Manufacturing Technology, Vol. 11, No. 11, UJEP, Usti nad Labem, 2011, pp.55-59.

DOI: 10.21062/ujep/x.2011/a/1213-2489/mt/11/1/55

Google Scholar

[16] M. Novak, Surfaces with high precision of roughness after grinding. Manufacturing Technology, Vol. 12, No. 13, 2012, pp.66-70.

DOI: 10.21062/ujep/x.2012/a/1213-2489/mt/12/1/66

Google Scholar

[17] M. Novak, F. Holešovský, Studium integrity brouseného povrchu [online]. [cit. 2014-2-28]. Available at www: http: /www. fvt. tuke. sk/journal/pdf08/2-str-11-13. pdf.

Google Scholar

[18] N. Novak, H. Kasuga, H. Ohmori, Differences at the Surface Roughness by the ELID and Grinding Technology. Manufacturing Technology, Vol. 13, No. 2, 2013, pp.210-215.

DOI: 10.21062/ujep/x.2013/a/1213-2489/mt/13/2/210

Google Scholar

[19] M. Novak, Studium jakosti brouseneho povrchu kalenych oceli, cast I. – drsnost povrchu, Strojirenska technologie, Vol. 16, No. 6, 2011, pp.26-33.

Google Scholar

[20] K. Osicka: Prumerna aritmeticka uchylka drsnosti povrchu - statisticke vyhodnoceni plochy. Strojirenska technologie. Vol. 14, No. 1. 2009, pp.30-32.

Google Scholar

[21] L. Rokyta, I. Lukovics, Vyzkum vlivu pomeru brusiv na jakost povrchu pri brouseni. Strojirenska technologie, Vol. 17, No. 1, 2, 2012, pp.93-95.

Google Scholar

[22] M. Tavodova, The surface quality of materials after cutting by abrasive water jet evaluated by selected methods. Manufacturing technology, Vol. 13, No. 2, 2013, pp.236-241.

DOI: 10.21062/ujep/x.2013/a/1213-2489/mt/13/2/236

Google Scholar

[23] J. Valicek, J. Rusnak, M. Müller, P. Hrabě, M. Kadnar, S. Hloch, M. Kusnerova, Geometricke aspekty drsnosti povrchu klasickych a netradicnich technologii. Jemna mechanika a optika, Vol. 53, No. 9, 2008, pp.249-253.

Google Scholar