Comparison of Sintered Carbide Shafts Turning with PCD and CBN Tools

Article Preview

Abstract:

The paper presents the results of turning tests with PCD and CBN tools of super hard materials such as sintered carbides WC-Co with different Co content in the material structure. In studies, the attention has been focused on the main cutting force component Fc and the surface roughness parameter Ra values, depending on the cutting data (vc, f, ap).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

234-239

Citation:

Online since:

February 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. Jaworska, Diament, otrzymywanie i zastosowanie w obróbce skrawaniem, WNT, Warszawa, (2007).

Google Scholar

[2] L.A. Dobrzański, Podstawy nauki o materiałach i metaloznawstwo: Materiały inżynierskie z podstawami projektowania materiałowego, WNT, Warszawa, 2002, 878-910.

Google Scholar

[3] T. Miyamoto, J. Fujiwara, K. Wakao, Influence of WC and Co in Cutting Cemented Carbides with PCD and CBN Tools, Key Engineering Materials 407 (2009) 428-431.

DOI: 10.4028/www.scientific.net/kem.407-408.428

Google Scholar

[4] H. Tanaka, S. Shimada, N. Ikawa, M. Yoshingaga, Wear Mechanism of Diamond Cutting Tool in Machining of Steel, Key Engineering Materials 196 (2001) 69-78.

DOI: 10.4028/www.scientific.net/kem.196.69

Google Scholar

[5] F.A. Almeida, A.J.S. Fernandes, F.J. Oliveira, R.F. Silva, Semi-orthogonal turning of hardmetal with CVD diamond and PCD inserts at different cutting angles, Vacumm 83 (2009) 1218-1223.

DOI: 10.1016/j.vacuum.2009.03.029

Google Scholar

[6] G. Byrne, D. Dornfeld, B. Denkena, Advancing Cutting Technology, CIRP Annals – Manufacturing Technology 52 (2003) 483-507.

DOI: 10.1016/s0007-8506(07)60200-5

Google Scholar

[7] Z.J. Yuan, Y.X. Yao, M. Zhou, Q.S. Bal, Lapping of single crystal diamond tools, CIRP Annals – Manufacturing Technology 52 (2003) 285-288.

DOI: 10.1016/s0007-8506(07)60585-x

Google Scholar

[8] G.T. Smith, Cutting Tool Technology Industrial Handbook, Springer-Verlag London, (2008).

Google Scholar

[9] W. Grzesik, Machining of Hard materials, Springer-Verlag London, 2008, 97-105.

Google Scholar

[10] S.C. Shaf, P.M. George, Surface Roughness Modeling in Precision Turning of Aluminium by Polycrystalline Diamond Tool Using Response Surface Methodology, International Journal of Emergency Technology and Advanced Engineering 5(2).

Google Scholar

[11] S.J. Heo, Environmentally conscious hard turning of cemented carbide materials on the basis of micro-cutting in SEM (2nd report): stress turning with three kinds of cutting tools, Journal of Mechanical Science and Technology 23 (2009).

DOI: 10.1007/s12206-009-0512-3

Google Scholar

[12] F. Kolcke, Cutting Tool Materials and Tools, Manufacturing Process, Springer-Verlang Berling, (2011).

Google Scholar

[13] Q. Bai, Y. Yao, S. Chen, Research and development of polycrystalline diamond woodworking tools, International Journal of Refractory Metals and Hard Materials 20 (2002) 395-400.

DOI: 10.1016/s0263-4368(02)00060-4

Google Scholar

[14] F. Nabhani, Wear mechanisms of ultra-hard cutting tools materials, Journal of Materials Processing Technology 115 (2001) 402-412.

DOI: 10.1016/s0924-0136(01)00851-2

Google Scholar

[15] M.J. Jackson, W. Ahmed, Machining of Brittle Materials Using Nanostructured Diamond Tools, Machining with Nanomaterials, Springer (2009) 1-30.

DOI: 10.1007/978-0-387-87660-3_5

Google Scholar

[16] W. Zębala, R. Kowalczyk, Estimating the effect of cutting data on surface roughness and cutting force during WC-Co turning with PCD tool using Taguchi design and ANOVA analysis, International Journal of Advanced Manufacturing Technology 77 (2015).

DOI: 10.1007/s00170-014-6382-6

Google Scholar

[17] W. Zębala, R. Kowalczyk, Cutting data influence on cutting forces and surface finish during sintered carbide turning, Key Engineering Materials 581 (2014) 148-153.

DOI: 10.4028/www.scientific.net/kem.581.148

Google Scholar

[18] W. Zębala, B. Słodki, Cutting data correlation in Inconel 718 turning, International Journal of Advanced Manufacturing Technology 65 (2013) 881-893.

DOI: 10.1007/s00170-012-4225-x

Google Scholar

[19] W. Zębala, J. Gawlik, A. Matras, G. Struzikiewicz, Ł. Ślusarczyk, Research of surface finish during titanium alloy turning, Key Engineering Materials 581 (2014) 409-414.

DOI: 10.4028/www.scientific.net/kem.581.409

Google Scholar

[20] A. Matras, W. Zębala, R. Kowalczyk, Precision milling of hardened steel with CBN tools, Key Engineering Materials 581 (2014) 182-187.

DOI: 10.4028/www.scientific.net/kem.581.182

Google Scholar

[21] W. Zębala, B. Słodki, G. Struzikiewicz, Productivity and reliability improvement in turning inconel 718 alloy - case study, Eksploatacja i Niezawodnosc-Maintenance and Reliability, 15, 4 (2013) 421-426.

Google Scholar

[22] J. Kundrák, G. Varga, Possibility of reducing environmental load in hard machining. Key Engineering Materials 496 (2011) 205-210.

DOI: 10.4028/www.scientific.net/kem.496.205

Google Scholar

[23] D. Fratila, Sustainable manufacturing through environmentally-friendly machining, Springer, 2013, 1-21.

Google Scholar

[24] J. Beňo, I. Maňková, M. Vrabeľ, D. Kottfer, Roughness measurement methodology for selection of tool inserts, Measurement 46, 1 (2013) 582-592.

DOI: 10.1016/j.measurement.2012.08.017

Google Scholar

[25] S.T. Newman, A. Nassehi, R. Imani-Asrai, V. Dhokia, Energy efficient process planning for CNC machining, CIRP Journal Manufacturing Scientific Technology 5 (2012) 127-136.

DOI: 10.1016/j.cirpj.2012.03.007

Google Scholar

[26] B. Mikó, J. Beňo, Effect of the Working Diameter to the Surface Quality in Free-form Surface Milling, Key Engineering Materials 581 (2014) 372-377.

DOI: 10.4028/www.scientific.net/kem.581.372

Google Scholar