Solid Oxide Fuel Cell Integrated with Supercritical Water Fueled by Methanol

Abstract:

Article Preview

A solid oxide fuel cell (SOFC) is known as an interesting energy conversion device because of its fuel flexibility and high efficiency. The hydrogen-rich stream is used as fuel carrier converting to generate electrical energy. A non-stoichiometric thermodynamic model based on minimum free energy was performed to predict the amount of hydrogen production via the methanol reforming under supercritical water (SCW) condition. The effects of SCW reaction temperature and water-to-methanol molar ratio on the SOFC power generation integrated with SCW reforming from methanol were investigated. The hydrogen yield, the required heat duty for a feed preheater and a SCW reactor and the SOFC power generation increase with increasing the SCW reaction temperature and the amount of water fed in SCW reactor. Under operating parameters of SCW reformer based on 1 mole/sec of methanol fed at the high temperature of 1273 K and water-to-methanol molar ratio of 5, the SOFC electrical power of 246 kW was produced with the maximum fuel utilization of 0.7.

Info:

Periodical:

Edited by:

Prof. K.M. Gupta, Prof. Donato Firrao, Prof. Hao Gong

Pages:

133-137

DOI:

10.4028/www.scientific.net/KEM.689.133

Citation:

A. Srisiriwat and N. Srisiriwat, "Solid Oxide Fuel Cell Integrated with Supercritical Water Fueled by Methanol", Key Engineering Materials, Vol. 689, pp. 133-137, 2016

Online since:

April 2016

Export:

Price:

$35.00

* - Corresponding Author

[1] P. Kuchonthara, S. Bhattacharya and A. Tsutsumi: J. Power Sources Vol. 124 (2003), pp.65-75.

[2] N. Srisiriwat: Applied Mechanics and Materials Vol. 110-116 (2012), pp.72-82.

[3] Y. Guo, S. Z. Wang, D. H. Xu, Y. M. Gong, H. H. Ma, X. Y. Tang: Renewable and Sustainable Energy Reviews Vol. 14 (2010), pp.334-343.

[4] S. Yesodharan: Current Science Vol. 82 (2002), pp.1112-1122.

[5] J. B. Gadhe, R. B. Gupta: International Journal of Hydrogen Energy Vol. 32 (2007), pp.2374-2381.

[6] J. H. Lee, N. R. Foster: Journal of Industrial and Engineering Chemistry Vol. 5 (1999), pp.116-122.

[7] S. Therdthianwong, N. Srisiriwat, A. Therdthianwong, E. Croiset: International Journal of Hydrogen Energy Vol. 36 (2011), pp.2877-2886.

DOI: 10.1016/j.ijhydene.2010.11.108

[8] S. Therdthianwong, N. Srisiriwat, A. Therdthianwong, E. Croiset: The Journal of Supercritical Fluids Vol. 57 (2011), pp.58-65.

DOI: 10.1016/j.supflu.2011.02.005

[9] Y. J. Lu, H. Jin, L. J. Guo, X. M. Zhang, C.Q. Cao, X. Guo: International Journal of Hydrogen Energy Vol. 33 (2008), pp.6066-6075.

[10] N. Srisiriwat and C. Wutthithanyawat: Applied Mechanics and Materials Vol. 619 (2014), pp.99-104.

[11] N. Srisiriwat and C. Wutthithanyawat: Applied Mechanics and Materials Vols. 446-447(2014), pp.790-795.

[12] H. Tang and K. Kitagawa: Chem. Eng. J. Vol. 106, 2005, pp.261-267.

[13] W. Feng, H. J. van der Kooi and J. de Swaan Arons: Chem. Eng. J. Vol. 98, 2004, pp.105-113.

[14] P. Ji, W. Feng, B. Chen and Q. Yuan: Chem. Eng. J. Vol. 124, 2006, pp.7-13.

[15] K. D. Panopoulos, L. E. Fryda, J. Karl, S. Poulou and E. Kakaras: J Power Sources Vol. 159 (2006), pp.570-585.

DOI: 10.1016/j.jpowsour.2005.12.024

[16] D. Georgis, S. S. Jogwar, A. S. Almansoori and P. Daoutidis: Proc. 2011 American Control Conference, San Francisco (2011), pp.1518-1523.

In order to see related information, you need to Login.