Solid Oxide Fuel Cell Integrated with Supercritical Water Fueled by Methanol

Article Preview

Abstract:

A solid oxide fuel cell (SOFC) is known as an interesting energy conversion device because of its fuel flexibility and high efficiency. The hydrogen-rich stream is used as fuel carrier converting to generate electrical energy. A non-stoichiometric thermodynamic model based on minimum free energy was performed to predict the amount of hydrogen production via the methanol reforming under supercritical water (SCW) condition. The effects of SCW reaction temperature and water-to-methanol molar ratio on the SOFC power generation integrated with SCW reforming from methanol were investigated. The hydrogen yield, the required heat duty for a feed preheater and a SCW reactor and the SOFC power generation increase with increasing the SCW reaction temperature and the amount of water fed in SCW reactor. Under operating parameters of SCW reformer based on 1 mole/sec of methanol fed at the high temperature of 1273 K and water-to-methanol molar ratio of 5, the SOFC electrical power of 246 kW was produced with the maximum fuel utilization of 0.7.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

133-137

Citation:

Online since:

April 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Kuchonthara, S. Bhattacharya and A. Tsutsumi: J. Power Sources Vol. 124 (2003), pp.65-75.

Google Scholar

[2] N. Srisiriwat: Applied Mechanics and Materials Vol. 110-116 (2012), pp.72-82.

Google Scholar

[3] Y. Guo, S. Z. Wang, D. H. Xu, Y. M. Gong, H. H. Ma, X. Y. Tang: Renewable and Sustainable Energy Reviews Vol. 14 (2010), pp.334-343.

Google Scholar

[4] S. Yesodharan: Current Science Vol. 82 (2002), pp.1112-1122.

Google Scholar

[5] J. B. Gadhe, R. B. Gupta: International Journal of Hydrogen Energy Vol. 32 (2007), pp.2374-2381.

Google Scholar

[6] J. H. Lee, N. R. Foster: Journal of Industrial and Engineering Chemistry Vol. 5 (1999), pp.116-122.

Google Scholar

[7] S. Therdthianwong, N. Srisiriwat, A. Therdthianwong, E. Croiset: International Journal of Hydrogen Energy Vol. 36 (2011), pp.2877-2886.

DOI: 10.1016/j.ijhydene.2010.11.108

Google Scholar

[8] S. Therdthianwong, N. Srisiriwat, A. Therdthianwong, E. Croiset: The Journal of Supercritical Fluids Vol. 57 (2011), pp.58-65.

DOI: 10.1016/j.supflu.2011.02.005

Google Scholar

[9] Y. J. Lu, H. Jin, L. J. Guo, X. M. Zhang, C.Q. Cao, X. Guo: International Journal of Hydrogen Energy Vol. 33 (2008), pp.6066-6075.

Google Scholar

[10] N. Srisiriwat and C. Wutthithanyawat: Applied Mechanics and Materials Vol. 619 (2014), pp.99-104.

Google Scholar

[11] N. Srisiriwat and C. Wutthithanyawat: Applied Mechanics and Materials Vols. 446-447(2014), pp.790-795.

DOI: 10.4028/www.scientific.net/amm.446-447.790

Google Scholar

[12] H. Tang and K. Kitagawa: Chem. Eng. J. Vol. 106, 2005, pp.261-267.

Google Scholar

[13] W. Feng, H. J. van der Kooi and J. de Swaan Arons: Chem. Eng. J. Vol. 98, 2004, pp.105-113.

Google Scholar

[14] P. Ji, W. Feng, B. Chen and Q. Yuan: Chem. Eng. J. Vol. 124, 2006, pp.7-13.

Google Scholar

[15] K. D. Panopoulos, L. E. Fryda, J. Karl, S. Poulou and E. Kakaras: J Power Sources Vol. 159 (2006), pp.570-585.

DOI: 10.1016/j.jpowsour.2005.12.024

Google Scholar

[16] D. Georgis, S. S. Jogwar, A. S. Almansoori and P. Daoutidis: Proc. 2011 American Control Conference, San Francisco (2011), pp.1518-1523.

DOI: 10.1109/acc.2011.5991513

Google Scholar