[1]
R.C. Chang, C. Yuan, Y.P. Wong, Y.F. Lin, C.S. Hong, Properties of (Na0. 5K0. 5)NbO3–SrTiO3 based lead-free ceramics and surface acoustic wave devices, Sensors. Actuat A. 136 (2007) 267–272.
DOI: 10.1016/j.sna.2006.11.002
Google Scholar
[2]
J. Yoo, J. Hong, H. Lee, Y. Jeong, B. Lee, H. Song, J. Kwon, Piezoelectric and dielectric properties of La2O3 added Bi(Na, K)TiO3–SrTiO3 ceramics for pressure sensor application, Sensors. Actuat A. 126 (2006) 41–47.
DOI: 10.1016/j.sna.2005.09.005
Google Scholar
[3]
O.P. Thakur, C. Prakash, and A.R. James, Enhanced dielectric properties in modified barium titanate ceramics through improved processing, J. Alloy. Comp. 470 (2009) 548-551.
DOI: 10.1016/j.jallcom.2008.03.018
Google Scholar
[4]
W. Liu, and X. Ren, Large piezoelectric effect in Pb-free ceramics, " Phys. Rev. Lett. 103 (2009) 257602-4.
Google Scholar
[5]
C. Duran, S. T-McKinstry, and G.L. Messing, Fabrication and electrical properties of textured Sr0. 53Ba0. 47Nb2O6 ceramics by templated grain growth, J. Am. Ceram. Soc. 83 (2000) 2203-2213.
DOI: 10.1111/j.1151-2916.2000.tb01536.x
Google Scholar
[6]
Z. Li, A. Wu, and P.M. Vilarinho, Perovskite phase stabilization of Pb(Zn1/3Ta2/3)O3 ceramics induced by PbTiO3 seeds, Chem. Mater. 16 (2004) 717-723.
DOI: 10.1021/cm030592v
Google Scholar
[7]
S.K. Ye, J.Y. Fuh, and L. Lu, Structure and electrical properties of 001 textured (Ba0. 85Ca0. 15)(Ti0. 9Zr0. 1)O3 lead-free piezoelectric ceramics, Appl. Phys. Lett. 100 (2012) 252906-4.
DOI: 10.1063/1.4730378
Google Scholar
[8]
P. Parjansri, U. Intatha, and S. Eitssayeam, Dielectric, ferroelectric and piezoelectric properties of Nb5+ doped BCZT ceramics, Mater. Res. Bull. 65 (2015) 61-67.
DOI: 10.1016/j.materresbull.2015.01.040
Google Scholar
[9]
R.B. Atkin, and R.M. Fulrath, Point defects and sintering of lead zirconate-titanate, J. Am. Ceram. Soc. 54 (1971) 265.
DOI: 10.1111/j.1151-2916.1971.tb12286.x
Google Scholar
[10]
V.M. Jali, S. Aparna, G. Sanjeev, and S.B. Krupanidhi, ac conductivity studies on the electron irradiated BaZrO3 ceramic, Nucl. Instrum. Meth. B 257 (2007) 505-509.
DOI: 10.1016/j.nimb.2007.01.167
Google Scholar
[11]
E. Brzozowski, M.S. Castro, Grain growth control in Nb-doped BaTiO3, J. Mater. Process. Technol. 168 (2005) 464-470.
DOI: 10.1016/j.jmatprotec.2005.02.246
Google Scholar
[12]
J.H. Park, B.K. Kim, K.H. Song, and S.J. Park, Piezoelectric properties of Nb2O5 doped and MnO2-Nb2O5 co-doped Pb(Zr0. 53Ti0. 47)O3, J. Mater. Sci. Mater. Electron. 6 (1995) 97-101.
DOI: 10.1007/bf00188191
Google Scholar
[13]
K. Kumar, and B. Kumar, Effect of Nb-doping on dielectric, ferroelectric and conduction behaviour of lead free Bi0. 5(Na0. 5K0. 5)0. 5TiO3 ceramic, Ceram. Int. 38 (2012) 1157-1165.
DOI: 10.1016/j.ceramint.2011.08.045
Google Scholar
[14]
M.J. Haun, E. Furman, S.J. Jang, and L.E. Cross, Thermodynamic theory of the lead zirconate-titanate solid solution system Part I: Phenomenology, Ferroelectrics, 99 (1989) 13-25.
DOI: 10.1080/00150198908221436
Google Scholar
[15]
D. Berlincourt, and H.H.A. Krueger, Domain processes in lead titanate zirconate and barium titanium ceramics, J. Appl. Phys. 30 (1959) 1804-1810.
DOI: 10.1063/1.1735059
Google Scholar
[16]
M. Demartin, and D. Damjanovic, Dependence of the direct piezoelectric effect in coarse and fine grain barium titanate ceramics on dynamic and static pressure, Appl. Phys. Lett. 68 (1996) 3046-3048.
DOI: 10.1063/1.115572
Google Scholar