The Effect of SiO2, TiO2, and B2O3 on the Crystallization of Glass-Ceramics Glaze Properties

Article Preview

Abstract:

The feasibility of developing glass-ceramic glaze in the system KNaO-CaO-MgO-ZnO with a variation in the composition of SiO2, TiO2, and B2O3 was studied. The SiO2, TiO2, and B2O3 were varied in the amount of 2.25-1.50, 0.001-0.10, and 0-0.1 molar equivalents respectively. The samples were one fired at 1180°C or double fired by reheat at the crystallization temperature for 10 minutes. The gloss, sintering behavior, phase, microstucture, and hardness, and were examined by glossmeter, side-view hot stage microscope, X-ray diffraction, SEM, and Vickers hardness respectively. The results showed the importance effect of SiO2, TiO2, and B2O3 on the glaze crystallization ability and its properties. At the fix value of Al2O3 at 0.24 molar equivalents and with the 0.001-0.10 molar equivalents of TiO2, lower the SiO2 content to 1.50 molar equivalents increased the glaze crystallization potential. An increase in the B2O3 to 0.1 molar equivalents suppressed the potential of glaze crystallization. The phases of samples were amorphous or composed of silicon dioxide and diopside as the main phases depending on the glaze composition and the firing history. In this study, the glaze appearances transparent to opaque and varied from gloss to matte with the specular gloss values between 23-100 GU. All samples appeared to have high Vickers hardness value in the range of 553-644. The crystallization decreased the gloss but increased the hardness value for the 2.25 molar equivalents SiO2 glaze. Finally, a composition with high hardness and high gloss was identified and its properties was also presented. These results suggested the limitation and the potential for applying this glass-ceramic glaze system to industry applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

206-211

Citation:

Online since:

May 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P.W. McMillan, Glass Ceramics, 2nd. ed., Academic Press, New York, (1979).

Google Scholar

[2] R. Casasola, J. Ma. Rincón, M. Romero. Glass-ceramics glazes for ceramic tiles – a review, J. Mater. Sci, 2012, 47, 553-582.

DOI: 10.1007/s10853-011-5981-y

Google Scholar

[3] G.H. Bell, Milestones in Glass-Ceramic: A Personal Perspective, Inter. J. Appl. Glass Sci., 2014, 5(2), 93-103.

Google Scholar

[4] C Leonelli, T. Manfredini, M. Paganelli, G.C. Pellacani, J.L.A. Albaro, J.E.E. Navarro, M. J. Orts, S. Bruni and F. Cariati, Li2O─SiO2─Al2O3─MeIIO Glass-Ceramic Systems for Tile Glaze Applications, J. Am. Ceram. Soc., May 1991, 74 (5), 983–987.

DOI: 10.1111/j.1151-2916.1991.tb04331.x

Google Scholar

[5] J. Ma Rincón, M. Romero, J. Marco, and V. Caballer, Some Aspects of Crystallization Microstructure on New Glass-Ceramic Glazes, Mater. Res. Bull., 1998, 33 (8), 1159–1164.

DOI: 10.1016/s0025-5408(98)00109-3

Google Scholar

[6] F.J. Torres and J. Alarcón, Pyroxene-based glass-ceramics as glazes for floor tiles, J. Eur. Ceram. Soc., April 2005, 25 (4), 349–355.

DOI: 10.1016/j.jeurceramsoc.2004.01.025

Google Scholar

[7] B.E. Yekta, P. Alizadeh, L. Rezazadeh, Floor tile glass-ceramic glaze for improvement of glaze surface properties, J. Eur. Ceram. Soc., 2006, 26, 3809–3812.

DOI: 10.1016/j.jeurceramsoc.2005.12.016

Google Scholar

[8] B.E. Yekta, P. Alizadeh, L. Rezazadeh, Synthesis of glass-ceramic glazes in the ZnO–Al2O3–SiO2–ZrO2 system, J. Eur. Ceram. Soc., 2007, 27, 2311–2315.

DOI: 10.1016/j.jeurceramsoc.2006.08.009

Google Scholar

[9] M. Gajek, J. Lis, J. Partyka and M. Wo´jczyk, Floor tile glass-ceramic glaze for improvement of the resistance to surface abrasion, Conf. Ser.: Mater. Sci. Eng., 2011, 18, 112016.

DOI: 10.1088/1757-899x/18/11/112016

Google Scholar

[10] S. Ghosh, K.S. Pal, N. Dandapat, J. Ghosh, S. Datta, Glass-ceramic glazes for future generation floor tiles, J. Eur. Ceram. Soc., May 2013, 33 (5), 935–942.

DOI: 10.1016/j.jeurceramsoc.2012.11.008

Google Scholar

[11] F.J. Torres, E.R. de Sola, J. Alarc'on, Effect of boron oxide on the microstructure of mullite-based glass-ceramic glazes for floor-tiles in the CaO–MgO–Al2O3–SiO2 system, J. Eur. Ceram. Soc., 2006, 26, 2285–2292.

DOI: 10.1016/j.jeurceramsoc.2005.04.020

Google Scholar

[12] J.J. Reinosa, F. Rubio-Marcos, E. Solera, M.A. Bengochea, J.F. Ferna´ndez, Sintering behaviour of nanostructured glass-ceramic glazes, Ceram. Int., 2010, 36, 1845–1850.

DOI: 10.1016/j.ceramint.2010.03.029

Google Scholar

[13] G.H. Beall and L.R. Pinckney, Nanophase Glass-Ceramics, J. Am. Ceram. Soc., January 1999, 82 (1), 5–16.

Google Scholar

[14] M. Gajek and J. Partyka, Comparison of Glass-Crystalline Glazes Obtained in the Laboratory and Industrial Applications, Qualicer (2012).

Google Scholar

[15] F.J. Torres, E. Ruiz de Sola, Javier Alarco´n, Effect of some additives on the development of spinel-based glass-ceramic glazes for floor-tiles, J. Non-Cryst. Solids, 2005, 351, 2453–2461.

DOI: 10.1016/j.jnoncrysol.2005.06.027

Google Scholar

[16] M. Romero, J. Ma Rincón, and A. Acosta, Effect of iron oxide content on the crystallization of a diopside glass-ceramic glaze, J. Eur. Ceram. Soc., June 2002, 22 (6), 883–890.

DOI: 10.1016/s0955-2219(01)00395-8

Google Scholar

[17] M.G. Rasteiro, T Gassman, R. Santos, E. Antunes, Crystalline phase characterization of glass-ceramic glazes, Ceram. Int., April 2007, 33 (3), 345–354.

DOI: 10.1016/j.ceramint.2005.10.002

Google Scholar

[18] M. J. Pascual, A. Durán & L. Pascual, Viscosity and thermal properties of glasses in the system R2O–B2O3–SiO2, R=Li, K, Na, Phys. Chem. Glasses, 2002, 43 (1), 25–31.

Google Scholar

[19] TiO2 (Titanium Dioxide, Titania) , Information on http: /digitalfire. com/4sight/oxide/tio2. html.

Google Scholar

[20] Resistance to loss of gloss, Information on http: /www. google. co. th/url?sa=t&rct=j&q=&esrc=s&frm=1&source=web&cd=1.

Google Scholar