Preparation, Characterization and Catalytic Performance of ZnO-SBA-15 Catalysts

Article Preview

Abstract:

The series of ZnO-SBA-15 catalysts with 0.9wt% to 8.5wt% ZnO content have been synthesized by solvothermal impregnated of Zn acetate in ethanol on mesoporous silica SBA-15 platelets in order to maximize the methyl ester selectivity in transesterification reaction. The properties of these catalyst were characterized by N2 adsorption-desorption isotherm, NH3 temperature-programmed desorption, SEM, and XRD. The results showed that the ordered mesoporous structure of SBA-15 was remained with specific surface areas above 500 m2/g and a narrow pore size distribution observed with the mean pore size around 60 Å after ZnO modification. The strength of the acid sites and total acid amount of ZnO-SBA-15 catalysts is varied with number of ZnO loadings. The synthesized ZnO-SBA-15 catalyst was tested for catalytic activity in transesterification of crude Jatropha oil. It was found that at 200 °C for 2 h reaction of the ZnO-SBA-15 catalysts with acid capacities of 0.36-1.29 mmol H+/g-catal gave 68-98wt% of FAME yields and 0.4-1.4wt% of FFA yields which are comparable to the pure ZnO.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

212-217

Citation:

Online since:

May 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] F. Ma, M. A. Hanna, Biodiesel production: a review, Bioresour. Technol. 70 (1999) 1-15.

Google Scholar

[2] G. Vincente, M. Martinez, J. Aracil, Integrated biodiesel production: a comparison of different homogeneous catalysts systems, Bioresour. Technol. 92 (2004) 297-305.

DOI: 10.1016/j.biortech.2003.08.014

Google Scholar

[3] S. Al-Zuhair, Production of biodiesel: possibilities and challenges, Biofuels, Bioprod. Bioref. 1 (2007) 157–66.

DOI: 10.1002/bbb.2

Google Scholar

[4] C. Wang, Y. Sun, L. Hu, Poly(ethylene naphthalate) formation transesterification of dimethylnaphthalate with ethylene glycol, J. Polym. Res. 1 (1994) 131–139.

DOI: 10.1007/bf01374088

Google Scholar

[5] R. Nava, T. Halachev, R. Rodriguez, V.M. Castano, Synthesis, characterization and catalytic behavior of a zinc acetate complex immobilized on silica-gel, Catal. A: Gen. 231 (2002) 131–149.

DOI: 10.1016/s0926-860x(02)00072-8

Google Scholar

[6] R. Nava, T. Halachev, R. Rodriguez, V.M. Castano, Immobilized zinc acetate complex on the surface of silica–alumina gel modified by succinic acid: an efficient catalyst for the esterification of DMT, Microporous Mesoporous, Mater. 78 (2005) 91–96.

DOI: 10.1016/j.micromeso.2004.09.021

Google Scholar

[7] R. Aafaqi, A.R. Mohamed, S. Bhatia, Kinetics of esterification of palmitic acid with isopropanol using p-toluene sulfonic acid and zinc ethanoate supported over silica gel as catalysts, J. Chem. Technol. Biotechnol. 79, (2004) 1127–1134.

DOI: 10.1002/jctb.1102

Google Scholar

[8] S. Baruah, S.S. Sinha, B. Ghosh, S. K. Pal, A. K. Raychaudhuri, J. Dutta, Photoreactivity of ZnO nanoparticles in visible light: effect of surface states on electron transfer reaction, J. Appl. Phys. 105 (2009) 074308.

DOI: 10.1063/1.3100221

Google Scholar

[9] S. Su, S.X. Lu, W. G. Xu, Photocatlytic degradation of reactive brilliant blue X-BR in aqueous solution using quatum-sized ZnO, Mater. Res. Bull. 8-9 (2008) 2172-2178.

DOI: 10.1016/j.materresbull.2007.08.029

Google Scholar

[10] A. M. Busuioc, V. Meynen, E. Beyers, M. Mentens, P. Cool, N. Bilba, E. F. Vansant, Structural features and photocatalytic behaviour of titania deposited within the pores of SBA-15, Appl. Catal. A: Gen. 312 (2006) 153-164.

DOI: 10.1016/j.apcata.2006.06.043

Google Scholar

[11] S.Y. Chen, T. Yokoi, C.Y. Tang, L.Y. Jang, T. Tatsumi, J.C.C. Chan, S. Cheng, Sulfonic acid-functionalized platelet SBA-15 materials as efficient catalysts for biodiesel synthesis, Green Chem., 13 (2011) 2920–2930.

DOI: 10.1039/c1gc15299h

Google Scholar

[12] G. D. Mihai, V. Meynen, M. Mertens, N. Bilba, P. Cool, E. F. Vansant, ZnO nanoparticles supported on mesoporous MCM-41 and SBA-15: a comparative physicochemical and photocatalytic study, J. Mat Sci, 45 (2010) 5786-5794.

DOI: 10.1007/s10853-010-4652-8

Google Scholar

[13] J. Sauer, F. Marlow, F. Schuth, Simulation of powder diffraction patterns of modified ordered mesoporous materials, Phys. Chem. Chem. Phys, 3 (2001) 5579-5584.

DOI: 10.1039/b108435f

Google Scholar

[14] D. Zho, J. Feng, Q. Huo, N. Melosh, G. H. Fredrickson, B. F. Chemelka, G. D. Stucky, Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores, Science 279 (1998) 548-552.

DOI: 10.1126/science.279.5350.548

Google Scholar

[15] S. Y Chen, T. Mochizuki, Y. Abe, M. Toba, Y. Yoshimura, Ti-incorporated SBA-15 mesoporous silica as an efficient and robust Lewis solid acid catalyst for the production of high-quality biodiesel fuels, Appl. Catal. B., 148-149 (2014) 344-356.

DOI: 10.1016/j.apcatb.2013.11.009

Google Scholar

[16] S. Y Chen, S. Lao-ubol, T. Mochizuki, Y. Abe, M. Toba, Y. Yoshimura, Transformation of non-edible vegetable oils into biodiesel fuels catalyzed by unconventional sulfonic-functionalized SBA-15, Appl. Catl. A., 485 (2014) 28-39.

DOI: 10.1016/j.apcata.2014.07.026

Google Scholar

[17] J. A. Melero, J. Iglesias, M. Gabriel, Heterogeneous acid catalysts for biodiesel production: current status and future challenges, Green Chem., 11 (2009) 1285-1308.

DOI: 10.1039/b902086a

Google Scholar