Synthesis and Investigation of MoO3 Microfilms and Nanorods by Thermal Chemical Vapor Deposition

Article Preview

Abstract:

MoO3 microfilms and nanorods can be synthesized by using the powder of MoS2 as starting materials by thermal chemical vapor deposition. The prepared products on substrates were investigated by field emission scanning electron microscope (FESEM), X-ray photoemission spectroscopy (XPS) and Raman spectroscopy. FESEM images showed the uniformly microfilms and nanorods-like with diameter around 50-100 nm and length of about through 5 μm, respectively. XPS patterns and Raman shifts revealed the prepared products consisting of MoO3 structure phases.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

23-27

Citation:

Online since:

May 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Zhou, S. Z. Deng, N. S. Xu, J. Chen, J. C. She, Synthesis and field-emission properties of aligned MoO3 nanowires, Appl. Phys. Lett. 83 (2003) 2653-2655.

DOI: 10.1063/1.1613992

Google Scholar

[2] S. Wang, Y. Zhang, X. Ma, W. Wang, X. Li, Z. Zhang, Y. Qian, Hydrothermal route to single crystalline a-MoO3 nanobelts and hierarchical structures, Solid State Commun. 136 (2005) 283-287.

DOI: 10.1016/j.ssc.2005.08.002

Google Scholar

[3] C-W. Chu, S-H. Li, C-W. Chen, V. Shrotriya, Y. Yang, High-performance organic thin-film transistors with metal oxide/metal bilayer electrode, Appl. Phys. Lett. 87 (2005) 193508-193511.

DOI: 10.1063/1.2126140

Google Scholar

[4] A. Phuruangrat, D. J. Hamb, S. Thongtem, J. S. Lee, Electrochemical hydrogen evolution over MoO3 nanowires produced by microwave-assisted hydrothermal reaction, Electrochem. Commun. 11 (2009) 1740-1743.

DOI: 10.1016/j.elecom.2009.07.005

Google Scholar

[5] G. Wei,W. Qin, D. Zhang, G. Wang, R. Kim, K. Zheng, L. Wang, Synthesis and field emission of MoO3 nanoflowers by a microwave hydrothermal route, J. Alloy Compd. 481 (2009) 417-421.

DOI: 10.1016/j.jallcom.2009.03.007

Google Scholar

[6] R. Liang, H. Cao, D. Qian, MoO3 nanowires as electrochemical pseudocapacitor materials, Chem. Commun. 47 (2011) 10305-10307.

DOI: 10.1039/c1cc14030b

Google Scholar

[7] R. Naouel, H. Dhaouadi, F. Touati, N. Gharbi1, Synthesis and Electrical Properties of Well-Ordered Layered -MoO3 Nanosheets, Nano-Micro Lett. 3 (2011) 242-248.

DOI: 10.1007/bf03353679

Google Scholar

[8] L. Maia, F. Yang, Y. Zhao, X. Xu, L. Xu, B. Hu, Y. Luo, H. Liu, Molybdenum oxide nanowires: synthesis and properties, Mater. Today. 14 (2011) 346-353.

DOI: 10.1016/s1369-7021(11)70165-1

Google Scholar

[9] S. Bai, S. Chen, L. Chen, K. Zhang, R. Luo, D. Li, C.C. Liu, Ultrasonic synthesis of MoO3 nanorods and their gas sensing properties, Sensor Actuator B. 174 (2012) 51-58.

DOI: 10.1016/j.snb.2012.08.015

Google Scholar

[10] T.H. Chiang, H.C. Yeh, The Synthesis of α-MoO3 by Ethylene Glycol, Mater. 6 (2013) 4609-4625.

Google Scholar

[11] K-K. Wang, F-X. Wang, Y-D. Liu, G-B. Pan, Vapor growth and photoconductive property of single-crystalline MoO3 nanosheets, Mater. Lett. 102–103 (2013) 8-11.

DOI: 10.1016/j.matlet.2013.03.092

Google Scholar

[12] D.Z. Pai1, K. (Ken) Ostrikov, S. Kumar, D. A. Lacoste, I. Levchenko, C.O. Laux, Energy efficiency in nanoscale synthesis using nanosecond plasmas, scientific report 3 (2013) 1-7: 1221, DOI: 10. 1038/srep01221.

DOI: 10.1038/srep01221

Google Scholar

[13] S. Alizadeh, S.A. Hassanzadeh-Tabrizi, MoO3 fibers and belts: Molten salt synthesis, characterization and optical properties, Ceram Int. (2015), http: /dx. doi. org/10. 1016/j. ceramint. 2015. 05. 024.

DOI: 10.1016/j.ceramint.2015.05.024

Google Scholar

[14] S. Pukird, W. Song, S. Noothongkaew, S.K. Kim, B.K. Min, S.J. Kim, K.W. Kim, S. Myung, K-S. An, Synthesis and electrical characterization of vertical-aligned ZnO-CuO hybrid nanowire p-n junctions, Appl. Surf. Sci. 351 (2015) 546-549.

DOI: 10.1016/j.apsusc.2015.05.164

Google Scholar