Phase Structure, Microstructure and Electrical Properties of BCZT Ceramics Prepared by Seed-Induced Method

Article Preview

Abstract:

The effect of particle sizes of CaZrO3 (CZ) nanocrystal on the phase structure, microstructure and electrical properties of Ba0.85Ca0.15Zr0.10Ti0.90O3 (BCZT) was studied. The CaCO3 and ZrO2 were used as starting materials for CaZrO3 (CZ) seeds synthesized by the molten-salt method. The results were found that the CZ powder has a pure perovskite with the particle size about 370 to 460 nm. Then the CZ nanocrystals were mixed with the metal oxides BaCO3, CaCO3, ZrO2 and TiO2 by mixed oxide method. The phase structure, microstructure and electrical properties of BCZT ceramic were investigated as a function of particle size and concentration of CZ. The results indicated that all samples showed pure perovskite phase. The highest values of density, grain size, dielectric constant (εr) and piezoelectric coefficient (d33) were 5.50 g/cm3, 10.95 μm, 2992 and 446 pC/N, respectively which obtained at the CZ seed size 459 nm.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

45-50

Citation:

Online since:

May 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, M. Nakamura, Lead-free piezoceramics, Nature, 432 (2004), p.84–87.

DOI: 10.1038/nature03028

Google Scholar

[2] K. Kantha, P. Pengpat, P. Jarupoom, U. Intatha, G. Rujijanagul, T. Tunkasiri, Phase formation and electrical properties of BNLT–BZT lead-free piezoelectric ceramic system, Curr. Appl. Phys., 9 (2009), p.460–466.

DOI: 10.1016/j.cap.2008.04.004

Google Scholar

[3] W. Bai, J. Hao, B. Shen, , J. Zhai, Dielectric properties and relaxoe behavior of high Curie temperature (Ba0. 85Ca0. 15)(Zr0. 1Ti0. 9)O3-Bi(Mg0. 5Ti0. 5)O3 Lead-free ceramics, Ceramics International, 39 (2013), S19-S23.

DOI: 10.1016/j.ceramint.2012.10.028

Google Scholar

[4] T. Wang, H. DU and X. SHI, Dielectric and Ferroelectric Properties of (1-x)Na0. 5Bi0. 5TiO3- xSrTiO3 Lead-free Piezoceramics System, Journal of Physics; Conference Series 152 (2009) 012065.

DOI: 10.1088/1742-6596/152/1/012065

Google Scholar

[5] Z. Wang, X M. Chen, L. Ni and X Q. Liu: Dielectric abnormities of complex perovskite Ba (Fe1/2Nb1/2) O3 ceramics over broad temperature and frequency range. Appl . phys. Lett. 90, (2007) 022904.

DOI: 10.1063/1.2430939

Google Scholar

[6] J. B Zhao., H.L. Du, S.B. Qu, H.M. Zhang, Z. Xu, Improvement in the piezoelectric temperature stability of (K0. 5Na0. 5)NbO3 ceramics, Chinese Science Bullitin August 2011 Vol. 56 No. 22: 2389–2393.

DOI: 10.1007/s11434-011-4439-6

Google Scholar

[7] W. Liu and X. Ren, Large piezoelectric effect in Pb-free ceramics. Phys. Rev Lett. 103, 257602. (2009).

Google Scholar

[8] P. Wang, Y. Li and Y. Lu, Enhanced piezoelectric properties of (Ba0. 85Ca0. 15)(Ti0. 9Zr0. 1)O3 lead-free ceramics by optimizing calcination and sintering temperature, Journal of the European Ceramic Society 31, Pages 2005–2012. (2011).

DOI: 10.1016/j.jeurceramsoc.2011.04.023

Google Scholar

[9] Z. Li, A. Wu, and P. M. Vilarinho, Perovskite phase stabilization of Pb(Zn1/3Ta2/3)O3 ceramics induced by PbTiO3 seeds. Chem Mater. 16, 717–723. (2004).

DOI: 10.1021/cm030592v

Google Scholar

[10] S.K. Ye, J.Y. Fuh, L. Lu, Structure and electrical properties of 〈001〉 textured (Ba0. 85Ca0. 15)(Ti0. 9Zr0. 1)O3 lead-free piezoelectric ceramics , J. Appl. Phys. 100 (2012) 252906.

DOI: 10.1063/1.4730378

Google Scholar

[11] S. Ye, J. Fuh, L. Lu, Y. Chang, J. -R. Yang, Structure and properties of hot-pressed lead-free (Ba0. 85Ca0. 15)(Zr0. 1Ti0. 9)O3 piezoelectric ceramics, RSC Adv., 2013, 3, 20693-20698.

DOI: 10.1039/c3ra43429j

Google Scholar

[12] W. Chen, S. Kume, K. Watari, Molten salt synthesis of 0. 94(Na1/2Bi1/2)TiO 3- 0. 06BaTiO3 powder, (2005) Materials Letters, 59 (26), pp.3238-3240.

DOI: 10.1016/j.matlet.2005.04.056

Google Scholar

[13] H. Ge, Y. Hou, C. Xia, M. Zhu, H. Wang, H. Yan, Preparation and piezoelectricity of NaNbO3 high-density ceramics by molten salt synthesis, (2011) Journal of the American Ceramic Society, 94 (12), pp.4329-4334.

DOI: 10.1111/j.1551-2916.2011.04685.x

Google Scholar

[14] N. Tawichai, W. Sittiyot, S. Eitssayeam, K. Pengpat, T. Tunkasiri, G. Rujijanagul, Preparation and dielectric properties of barium iron niobate by molten-salt synthesis (2012) Ceramics International, 38 (SUPPL. 1), pp. S121-S124.

DOI: 10.1016/j.ceramint.2011.04.064

Google Scholar

[15] K. Krishan and K. Binay, Effect of Nb-doping on dielectric, ferroelectric and conduction behavior of lead free Bi0. 5(Na0. 5K0. 5)0. 5TiO3 ceramic, Ceramics International 38 (2012) 1157–1165; ISSN: 0272-8842.

DOI: 10.1016/j.ceramint.2011.08.045

Google Scholar

[16] H.T. Martirenat and J.C. Burfoot, Grain-size effects on properties of some ferroelectric ceramics, J. Phys. C: Solid State Phys., Vol. 7 (1974)3172.

DOI: 10.1088/0022-3719/7/17/024

Google Scholar

[17] K.N. Pham, A. Hussain, C.W. Ahn, I.W. Kim, S.J. Jeong, J.S. Lee, Giant strain in Nb-doped Bi 0. 5 (Na0. 82 K0. 18)0. 5 TiO3 lead-free electromechanical ceramics, Materials Letters 64 (20), 2219-2222, (2010).

DOI: 10.1016/j.matlet.2010.07.048

Google Scholar

[18] M.J. Haun, E. Furman, S.J. Jang, and L.E. Cross. Thermodynamic theory of the lead zirconate-titanate solid solution system Part I: Phenomenology, Ferroelectrics, Vol. 99, 1989, pp.13-25.

DOI: 10.1080/00150198908221436

Google Scholar

[19] R. Clive A., K. Namchul, K. John-Paul, C. Wenwu, and S. Thomas R., Intrinsic and extrinsic size effects in fine-grained morphotropic-phase-boundary lead zirconate titanate ceramics, J. Am. Ceram. Soc., 81.

DOI: 10.1111/j.1151-2916.1998.tb02389.x

Google Scholar

[3] 677–88 (1998).

Google Scholar