[1]
J. van der Geer, J.A.J. Hanraads, R.A. Lupton, The art of writing a scientific article, J. Sci. Commun. 163 (2000) 51-59.
Google Scholar
[2]
Tinoco, J., Correia, G, Cortez, P.: A Novel Approach to Predicting Young's Modulus of Jet Grouting Laboratory Formulations over Time Using Data Mining techniques. Engineering Geology, 169, 50-60 (2014).
DOI: 10.1016/j.enggeo.2013.11.015
Google Scholar
[3]
Lewin, P.L., Hunter, J.A., Hao, L., et al.: Identification of PD Defect Typologies Using a Support Vector Machine. In: 31st IEEE Electrical Insulation Conference, pp.333-336, IEEE Press, New Jersey (2013).
DOI: 10.1109/eic.2013.6554261
Google Scholar
[4]
Burrows, S., Uitdenbogerd L., Turpin A.: Comparing Techniques for Authorship Attribution of Source Code. Software: Practice and Experience, 44, 1-32(2012).
DOI: 10.1002/spe.2146
Google Scholar
[5]
Gedikpinar, M.: The Speed Control of DC Motors with Support Vector Machine. Przeglad Elektrotechniczny, 87, 269-271(2011).
Google Scholar
[6]
Tseng, P., Yun, S.: A Coordinate Gradient Descent Method for Linearly Constrained Smooth Optimization and Support Vector Machines Training. Computational Optimization and Applications, 47, 179-206(2010).
DOI: 10.1007/s10589-008-9215-4
Google Scholar
[7]
Lin, S., Lee, Z., Chen, Sh., Tseng T.: Parameter Determination of Support Vector Machine and Feature Selection Using Simulated Annealing Approach. Applied Soft Computing, 8, 1505-1512(2008).
DOI: 10.1016/j.asoc.2007.10.012
Google Scholar
[8]
Xu, Z., Zhao, Y., Wen X.: State Prediction of Slagging on Coal-fired Boilers based on Simulated Annealing Algorithms and Support Vector Machine. East China Electric Power, 39, 463-467(2011) (in Chinese).
Google Scholar
[9]
Alwan, H.B., Kumahamud, K.R.: Optimizing Support Vector Machine Parameters Using Continuous Ant Colony Optimization. In: 7th International Conference on Computing and Convergence Technology, pp.164-169, IEEE Press, New Jersey (2012).
Google Scholar
[10]
Gao, F., Pu, H., Zhai, Y., Chen, L.: Application of Support Vector Machine and Ant Colony Algorithm in Optimization of Coal Ash Fusion Temperature. In: 2011 International Conference on Machine Learning and Cybernetics, pp.666-672, IEEE Press, New Jersey (2011).
DOI: 10.1109/icmlc.2011.6016759
Google Scholar
[11]
Batsaikhan, O., Ho, C.K., Singh, Y.P.: A Genetic Algorithm-based Multi-class Support Vector Machine for Mongolian Character Recognition. Journal of Computer Science, 8, 84-95(2008).
Google Scholar
[12]
Long, G.: GDP Prediction by Support Vector Machine Trained with Genetic Algorithm. In: 2010 2nd International Conference on Signal Processing Systems, V3-1-V3-3, IEEE Press, New Jersey(2010).
DOI: 10.1109/icsps.2010.5555854
Google Scholar
[13]
Wang, J., Zhang, Z., Zhang, W.: Support Vector Machine based on Double-population Particle Swarm Optimization. Journal of Convergence Information Technology, 8, 898-905(2013).
DOI: 10.4156/jcit.vol8.issue8.106
Google Scholar
[14]
Huang, Q.: Fuzzy Support Vector Machine Using Particle Swarm Optimization for High-tech Enterprises Financing Risk Assessment. In: 2013 International Conference on Computational and Information Sciences, pp.670-673, IEEE Press, New Jersey (2013).
DOI: 10.1109/iccis.2013.182
Google Scholar
[15]
Liu, C. , Wang, X. , Pan F.: Parameters Selection and Stimulation of Support Vector Machines based on Ant Colony Optimization Algorithm. Journal of Central South University:Science and Technology, 39, 1309-1313(2008) (in Chinese).
Google Scholar
[16]
Karaboga, D., Basturk, B.: A Powerful and Efficient Algorithm for Numerical Function Optimization: Artificial Bee Colony(ABC) Algorithm. Journal of Global Optimization, 39, 459-471 (2007).
DOI: 10.1007/s10898-007-9149-x
Google Scholar
[17]
Karaboga, D.: An Idea based on Honey Bee Swarm for Numerical Optimization. Technical Report, Erciyes University, Engineering Faculty, Computer Engineering Department(2005).
Google Scholar
[18]
Karaboga, D., Basturk, B.: A Comparative Study of Artificial Bee Colony Algorithm Applied Mathematics and Computation, 214, 108-132(2009).
DOI: 10.1016/j.amc.2009.03.090
Google Scholar
[19]
Information on http: /archive. ics. uci. edu/ml.
Google Scholar