[1]
T. Behjat, A.R. Russly, C.A. Luqman, The effect of polyethylene glycol on the characteristics of kenaf cellulose/low density polyethylene biocomposites, Int. J. Biol. Macromol. 47 (2011) 292-297.
DOI: 10.1016/j.ijbiomac.2010.04.004
Google Scholar
[2]
H.M. Akil, M.F. Omar, A.A.M. Mazuki, S. Safiee, Z.A.M. Ishak, A. Abu Bakar, Kenaf fiber reinforced composites: A review, Mater. Des. 32 (2011) 4107-4121.
DOI: 10.1016/j.matdes.2011.04.008
Google Scholar
[3]
N. Saba, M.T. Paridah, M. Jawaid, Mechanical properties of kenaf fiber reinforced polymer composite: A review, Constr. Build. Mater. 76 (2015) 87-96.
DOI: 10.1016/j.conbuildmat.2014.11.043
Google Scholar
[4]
M. Farsi, Thermoplastic matrix reinforced with natural fibers: A study on interfacial behavior: D. Jian Wang (Ed. ), Some Critical Issues for Injection Molding, InTech, 2012, pp.225-250.
DOI: 10.5772/34527
Google Scholar
[5]
I.S. Tawakkal, M.J. Cran, S.W. Bigger, Effect of kenaf fiber loading and thymol concentration on the mechanical and thermal properties of PLA/kenaf/thymol composites, Ind. Crops Prod. 61 (2014) 74-83.
DOI: 10.1016/j.indcrop.2014.06.032
Google Scholar
[6]
A. Pang, H. Ismail, Effects of kenaf loading and 3-aminopropyltriethoxysilane coupling agent on the properties of polypropylene/waste tire dust/kenaf composites, J. Thermoplast. Compos. Mater. (2013).
DOI: 10.1177/0892705712475002
Google Scholar
[7]
I.S. Aji, S.M. Sapuan, E.S. Zainudin, K. Abdan, Kenaf fibers as reinforcement for polymeric composites: A review, Int. J. Mech. Mater. Eng. 4 (2009) 239-248.
Google Scholar
[8]
N. Sarifuddin, H. Ismail, Z. Ahmad, The effect of kenaf core fiber loading on properties of low density polyethylene/thermoplastic sago starch/kenaf core fiber composites, J. Phys. Sci. 24 (2013) 97-115.
DOI: 10.15376/biores.8.3.4238-4257
Google Scholar
[9]
B.K. Tan, Y.C. Ching, S.N. Gan, S. Ramesh, M.R. Rahman, Water absorption properties of kenaf fibre-poly (vinyl alcohol) composites, Mater. Res. Innovations 18 (2014) 144-146.
DOI: 10.1179/1432891714z.000000000946
Google Scholar
[10]
H.P.S. Abdul Khalil, N.L. Suraya, Anhydride modification of cultivated kenaf bast fibers: Morphological, spectroscopic, and thermal studies, BioResources 6 (2011) 1122-1135.
DOI: 10.15376/biores.6.2.1122-1135
Google Scholar
[11]
R. Nordin, H. Ismail, Z. Ahmad, A. Rashid, Performance improvement of (linear low-density polyethylene)/poly (vinyl alcohol) blends by in situ silane crosslinking, J. Vinyl Add. Tech. 18 (2012) 120-128.
DOI: 10.1002/vnl.20294
Google Scholar
[12]
H. Ismail, R. Nordin, Z. Ahmad, A. Rashid, Processability and miscibility of linear low-density polyethylene/poly (vinyl alcohol) blends: In situ compatibilization with maleic acid, Iran. Polym. J. 19 (2010) 297-308.
DOI: 10.1002/vnl.20294
Google Scholar
[13]
H. Ismail, A.H. Abdullah, A.A. Bakar, Kenaf reinforced high-density polyethylene/soya powder composites: The effects of filler loading and compatibilizer, J. Reinf. Plast. Compos. 29 (2010) 2489-2497.
DOI: 10.1177/0731684409354392
Google Scholar
[14]
R. Santiagoo, H. Ismail, K. Hussin, Mechanical properties, water absorption, and swelling behavior of rice husk powder filled polypropylene/recycled acrylonitrile butadiene rubber (PP/NBRr/RHP) biocomposites using silane as a coupling agent, BioResources 4 (2011).
DOI: 10.15376/biores.6.4.3714-3726
Google Scholar
[15]
H. Osman, H. Ismail, and M. Mariatti, Polypropylene/natural rubber composites filled with recycled newspaper: Effect of chemical treatment using maleic anhydride-grafted polypropylene and 3-aminopropyltriethoxysilane, Polym. Compos. 33 (2012).
DOI: 10.1002/pc.22178
Google Scholar