A Facile Coating Method for Superhydrophobic Magnetic Composite Sheet from Biodegradable Durian Peel for Electromagnetic Wave Absorbance Application

Article Preview

Abstract:

Most of the electromagnetic (EM) wave absorbers are commonly made from polymer-based materials. A large number of polymers are resistant to the environmental degradation and are thus responsible for the buildup of polymeric solid waste materials. These solid wastes cause acute environmental problems and remain undegraded for quite a long time. In a view of the awareness and concern for the problems created by the polymeric solid wastes, new biodegradable cellulosic composite with low cost and nontoxic materials, have been designed and developed. However, the properties of natural fibers that tends to absorb water, thus limiting their application. In this study, precipitated calcium carbonate (PCC) was added with stearic acid (SA) in order to generate a hydrophobic coating formulation. PCC works as filler and SA acts as surface hydrophobic modification agent. Polymer latex was then added to the coating compound as the binder. The composite surface morphology was inspected using scanning electron microscope (SEM). Results show that durian peel composite sheet had successfully achieved a superhydrophobic surface with a water contact angle of 154.85° which exceed 150°.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

39-43

Citation:

Online since:

May 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] X. Tang, K.A. Hu, Preparation and electromagnetic wave absorption properties of Fe-doped zinc oxide coated barium ferrite composites, Mater. Sci. Eng., B 139 (2007) 119-123.

DOI: 10.1016/j.mseb.2007.01.052

Google Scholar

[2] H. H. Abdullah, A. Z. M. Asa'ari, N. I. M. Zawawi, L. C. Abdullah, S. Zakaria, Effects of physical treatments on the hydrophobicity of kenaf whole stem paper surface using stearic acid, BioResources, 8(3) (2013) 4088-4100.

DOI: 10.15376/biores.8.3.4088-4100

Google Scholar

[3] J. Zhang, J. Li, Y. Han, Superhydrophobic PTFE surfaces by extension, Macromol. Rapid Commun. 25 (2004) 1105–1108.

DOI: 10.1002/marc.200400065

Google Scholar

[4] L. Feng, Y. Song, J. Zhai, B. Liu, J. Xu, L. Jiang, D. Zhu, Creation of a superhydrophobic surface from an amphiphilic polymer, Angew. Chem. Int. Ed. 42 (2003) 800–802.

DOI: 10.1002/anie.200390212

Google Scholar

[5] Z. Chen, F. Li, L. Hao, A. Chen, Y. Kong, One-step electrodeposition process to fabricate cathodic superhydrophobic surface, Appl. Surf. Sci. 258 (2011) 1395–1398.

DOI: 10.1016/j.apsusc.2011.09.086

Google Scholar

[6] L. Feng, Z. Zhang, Z. Mai, Y. Ma, B. Liu, L. Jiang, D. Zhu, A superhydrophobic and super-oleophilic coating mesh film for the separation of oil and water, Angew. Chem. Int. Ed. 116 (2004) 2046–(2048).

DOI: 10.1002/ange.200353381

Google Scholar

[7] N. Verplanck, Y. Coffinier, V. Thomy, R. Boukherroub, Wettability Switching Techniques on Superhydrophobic Surfaces, Nanoscale Res. Lett. 2 (2007) 577-596.

DOI: 10.1007/s11671-007-9102-4

Google Scholar

[8] L. Cao, H. H. Hu, D. Gao, Design and fabrication of micro-textures for inducing a superhydrophobic behavior on hydrophilic materials, Langmuir 23 (2007) 4310-4314.

DOI: 10.1021/la063572r

Google Scholar

[9] X. Zhang, X. Liu, J. Laakso, E. Levänen, T. Mäntylä, Easy-to-clean property and durability of superhydrophobic flaky c-alumina coating on stainless steel in field test at a paper machine, Appl. Surf. Sci. 258 (2012) 3102–3108.

DOI: 10.1016/j.apsusc.2011.11.045

Google Scholar

[10] L. Feng, S. Li, H. Li, J. Zhai, Y. Song, L. Jiang, D. Zhu, Super-hydrophobic surface of aligned polyacrylonitrile nanofibers, Angew. Chem. Int. Ed. 41 (2002) 1221–1223.

DOI: 10.1002/1521-3773(20020402)41:7<1221::aid-anie1221>3.0.co;2-g

Google Scholar

[11] H. Yang, Y. Deng, Preparation and physical properties of superhydrophobic papers, J. Colloid Interface Sci. 325 (2008) 588-593.

DOI: 10.1016/j.jcis.2008.06.034

Google Scholar

[12] W. Wang, S. Ji, I. Lee, A facile method of nickel electroless deposition on various neutral hydrophobic polymer surfaces, Appl. Surf. Sci. 283 (2013) 309-320.

DOI: 10.1016/j.apsusc.2013.06.108

Google Scholar

[13] S.S. Latthe, S.L. Dhere, C. Kappenstein, H. Imai, V. Ganesan, A.V. Rao, P.B. Wagh, S.C. Gupta, Sliding behavior of water drops on sol–gel derived hydrophobic silica films, Appl. Surf. Sci. 256 (2010) 3259–3264.

DOI: 10.1016/j.apsusc.2009.12.016

Google Scholar

[14] A.V. Rao, S.S. Latthe, S.A. Mahadik, C. Kappenstein, Mechanically stable and corrosion resistant superhydrophobic sol–gel coatings on copper substrate, Appl. Surf. Sci. 257 (2011) 5772–5776.

DOI: 10.1016/j.apsusc.2011.01.099

Google Scholar

[15] S.S. Latthe, H. Imai, V. Ganesan, A.V. Rao, Ultrahydrophobic silica films by sol–gel process, J. Porous Mater. 17 (2010) 565–571.

DOI: 10.1007/s10934-009-9325-0

Google Scholar

[16] Z. Zheng, Z. Gu, R. Huo, Y. Ye, Superhydrophobicity of polyvinylidene fluoride membrane fabricated by chemical vapor deposition from solution, Appl. Surf. Sci. 255 (2009) 7263–7267.

DOI: 10.1016/j.apsusc.2009.03.084

Google Scholar

[17] S. Wang, L. Feng, L. Jiang, One-step solution-immersion process for the fabrication of stable bionic superhydrophobic surfaces, Adv. Mater. 18 (2006) 767–770.

DOI: 10.1002/adma.200501794

Google Scholar

[18] J. Shen, X. Qian, Use of mineral pigments in fabrication of superhydrophobically engineered cellulosic paper, Bioresources, 7 (2012) 4495-4498.

DOI: 10.15376/biores.7.4.4495-4498

Google Scholar

[19] T.C. Chandra, M.M. Mirna, J. Sunarso, Y. Sudaryanto, S. Ismadji, Activated carbon from durian shell: Preparation and characterization, J. Taiwan Inst. Chem. Eng., 40 (2009) 457-462.

DOI: 10.1016/j.jtice.2008.10.002

Google Scholar

[20] R. Farahiyan, M. K. Shahril, M. Abu, A. Y. B. Hashim, Green magnetic wave absorber: The potential of paddy straw and recycled paper, Mater. Res. Innovations 18 (2014) 21-25.

DOI: 10.1179/1432891714z.000000000926

Google Scholar

[21] Z. Hu, X. Zen, J. Gong, Y. Deng, Water resistance improvement of paper by superhydrophobic modification with microsized CaCO3 and fatty acid coating, Colloids Surf., A. 351 (2009) 65-70.

DOI: 10.1016/j.colsurfa.2009.09.036

Google Scholar