Synthesis and Characterizations of MOF-199 Using PODFA as Porogen for CO2 Adsorption Applications

Article Preview

Abstract:

Copper-based metal-organic framework (MOF-199, also known as Cu-BTC and HKUST-1) materials were successfully synthesized by hydrothermal method using renewable straight-chain fatty alcohol with eight carbon chain length (i.e. octyl alcohol). The addition of palm oil derived fatty alcohol (PODFA) was suggested to act as porogen (structure directing agent) that aided the particle formation and flexible porous structure. This synthesis approach was environmental-friendly and sustainable by utilizing the fatty alcohols originated from biomass such as palm oil. The resulting MOF-199 materials exhibited single crystalline octahedral morphology structure by X-ray diffraction analyses and SEM images. The optimum ratio of octyl alcohol exhibited well-defined single octahedral particles at size range of ca. 10-50 µm and reduced by-product formation of cuprous oxide at high temperature synthesis. The nature of MOF-199 having apparently high surface area, high pore volume and low density provided the possibility in carbon capture storage. The CO2 adsorption capacity of MOF-199 investigated using high pressure volumetric analyser (HPVA-II) at ambient temperature (i.e. 25 °C) was found to be at maximum working capacity.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

44-49

Citation:

Online since:

May 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Li, M. Eddaoudi, M. O'Keeffe, O.M. Yaghi, Design and synthesis of an exceptionally stable and highly porous metal-organic framework, Nature 402 (1999) 276-279.

DOI: 10.1038/46248

Google Scholar

[2] S.S.Y. Chui, S.M.F. Lo, J.P.H. Charmant, A.G. Orpen, I.D. Williams, A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n, Science 283 (1999) 1148-1150.

DOI: 10.1126/science.283.5405.1148

Google Scholar

[3] Y.K. Seo, G. Hundal, I.T. Jang, Y.K. Hwang, C.H. Jun, J.S. Chang, Microwave synthesis of hybrid inorganic-organic materials including porous Cu3(BTC)2 from Cu(II)–trimesate mixture, Microporous Mesoporous Mater. 119 (2009) 331-337.

DOI: 10.1016/j.micromeso.2008.10.035

Google Scholar

[4] F. Raganati, V. Gargiulo, P. Ammendola, M. Alfe and R. Chirone, CO2 capture performance of HKUST-1 in a sound assisted fluidized bed, Chem. Eng. J. 239 (2014) 75-86.

DOI: 10.1016/j.cej.2013.11.005

Google Scholar

[5] V. Krungleviciute, K. Lask, L. Heroux, A.D. Migone, J.Y. Lee, J. Li, A. Skoulidas, Argon adsorption on Cu3(Benzene-1, 3, 5-tricarboxylate)2(H2O)3 metal-organic framework, Langmuir 23 (2007) 3106-3109.

DOI: 10.1021/la061871a

Google Scholar

[6] S.L. Serna, M.A. O-Tolentino, M.D.L. López-Núñez, A.S. Cruz, A.G. Vargas, R.C. Sierra, H.I. Beltrán, J. Flores, Electrochemical behaviour of Cu3(BTC)2 metal-organic framework: The effect of the method of synthesis, J. Alloy Compd. 540 (2012).

DOI: 10.1016/j.jallcom.2012.06.030

Google Scholar

[7] L.K. Wee, N. Janssens, S.R. Bajpe, C.E.A. Kirschhock, J.A. Martens, Heteropolyacid encapsulated in Cu3(BTC)2 nanocrystals: An effect of esterification catalyst, Catal. Today 171 (2011) 275-280.

DOI: 10.1016/j.cattod.2011.03.017

Google Scholar

[8] J. Gascon, S. Aguado, F. Kapteijn, Manufacture of dense coatings of Cu3(BTC)2 (HKUST-1) on α-alumina, Microporous Mesoporous Mater. 113 (2008) 132-138.

DOI: 10.1016/j.micromeso.2007.11.014

Google Scholar

[9] P. Chowdury, C. Bikkina, D. Meister, F. Dreisbach, S. Gumma, Comparison of adsorption isotherms on Cu-BTC metal-organic frameworks synthesized from different routes, Microporous Mesoporous Mater. 117 (2009) 406-413.

DOI: 10.1016/j.micromeso.2008.07.029

Google Scholar

[10] S. Keskin, J. Liu, J.K. Jognson, D.S. Sholl, Atomically detailed models of gas mixture diffusion through CuBTC membranes, Microporous Mesoporous Mater. 125 (2009) 101-106.

DOI: 10.1016/j.micromeso.2009.01.016

Google Scholar

[11] Q.M. Wang, D. Shen, M. Bülow, M.L. Lau, S. Deng, F.R. Fitch, N.O. Lemcoff, J. Semanscin, Metallo-organic molecular sieve for gas separation and purification, Microporous Mesoporous Mater. 55 (2002) 217-230.

DOI: 10.1016/s1387-1811(02)00405-5

Google Scholar

[12] J. Rouquerol, D. Avnir, C.W. Fairbridge, D.H. Everett, J.H. Haynes, N. Pernicone, J.D. F. Ramsay, K.S.W. Sing, K.K. Unger, Recommendations for the characterization of porous solids, Pure Appl. Chem. 66 (1994) 1739-1758.

DOI: 10.1351/pac199466081739

Google Scholar

[13] P.K. Singh, M.K. Iqubal, V.K. Shukla, M. Shuaib, Microemulsions: current trends in novel drug delivery systems, J. Pharm. Chem. Biol. Sci. 1 (2014) 39-51.

Google Scholar

[14] K.S. Lin, A.K. Adhikari, C.N. Ku, C.L. Chiang, H. Kuo, Synthesis and characterization of porous HKUST-1 metal organic framework for hydrogen storage, Int. J. Hydrogen Energy 37 (2012) 13865-13871.

DOI: 10.1016/j.ijhydene.2012.04.105

Google Scholar

[15] L.H. Wee, M.R. Lohe, N. Janssens, S. Kaskel, J. Martens, Fine tuning of the metal-organic framework Cu(BTC) HKUST-1 crystal size in the 100 nm to 5 micron range, J. Mater. Chem. 22 (2012) 13742-13746.

DOI: 10.1039/c2jm31536j

Google Scholar

[16] T.V.N. Thi, C.L. Luu, T.C. Hoang, T. Nguyen, T.H. Bui, P.H.D. Nguyen, T.P.P. Thi, Synthesis of MOF-199 and application to CO2 adsorption, Adv. Nat. Sci.: Nanosci. Nanotechnol. 4 (2013) 035016.

DOI: 10.1088/2043-6262/4/3/035016

Google Scholar

[17] M. Klimakow, P. Klobes, K. Rademann and F. Emmerling, Characterization of mechanochemically synthesized MOFs, Microporous Mesoporous Mater. 154 (2012) 113-118.

DOI: 10.1016/j.micromeso.2011.11.039

Google Scholar

[18] S.H. Kim, S.T. Yang, J. Kim, W.S. Ahn, Sonochemical synthesis of Cu3(BTC)2 in a deep eutectic mixture of choline chloride/dimethylurea, Bull. Korean Chem. Soc. 32 (2011) 2783-2786.

DOI: 10.5012/bkcs.2011.32.8.2783

Google Scholar

[19] N. Mahadi, H. Misran, S.Z. Othman, N.S. Jamaludin, A. Manap, N.F.S. Anuar, Hydrothermal synthesis and characterizations of MOF-199 using renewable template, Appl. Mech. Mater. 773-774 (2015) 226-231.

DOI: 10.4028/www.scientific.net/amm.773-774.226

Google Scholar

[20] S.N. Nobar, S. Farooq, Experimental and modelling study of adsorption and diffusion of gases in Cu-BTC, Chem. Eng. Sci. 84 (2012) 801-813.

DOI: 10.1016/j.ces.2012.05.022

Google Scholar