Morphology and Phase Identification of Bioactive Freeze-Dried β-CaSiO3

Article Preview

Abstract:

Freeze-dried β-wollastonite (β-CaSiO3) powders were synthesized via sol-gel, combined with autoclaved, sintered and finally freeze-dried at -50 °C for 12 h using rice straw ash and calcined limestone as the starting materials. To prepare β-CaSiO3, the precursor ratio of SiO2:CaO was set at 45:55. Pure β-CaSiO3 was obtained after sintering at 950 °C for 3 h. The bioactivity of freeze-dried β-CaSiO3 was investigated by soaking the cylinderical shape samples in simulated body fluid (SBF) up to 21 days. The surface compositional, morphological and structural changes of the samples before and after soaking were analyzed via X-ray diffraction (XRD) and field emission scanning electron microscope (FESEM) coupled with EDS. Sintered freeze-dried β-CaSiO3 has a porous structure and changed to cauliflower-like after soaking in simulated body fluid solution. After 21 days of soaking process, an amorphous calcium phosphate (ACP) and calcium deficient hydroxyapatite (CDHA) were formed with the molar ratio of Ca/P between 1.76 to 1.63.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

72-77

Citation:

Online since:

May 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S.R. Teixeira, A.E. Souza, C.L. Carvalho, V.C.S. Reynoso, M. Romero, J. Ma, Characterization of a wollastonite glass-ceramic material prepared using sugar cane bagasse ash (SCBA) as one of the raw materials, Mater. Charact. 98 (2014) 209-214.

DOI: 10.1016/j.matchar.2014.11.003

Google Scholar

[2] R.A. Rashid, R. Shamsudin, M.A.A. Hamid, A. Jalar, In-vitro bioactivity of wollastonite materials derived from limestone and silica sand, Ceram. Int. 40 (2014) 6847-6853.

DOI: 10.1016/j.ceramint.2013.12.004

Google Scholar

[3] M.M. Shukur, E.A. Al-Majeed, M.M. Obied, Characteristic of wollastonite synthesized from local raw materials. Int. J. Eng. Technol. 4(7) (2014).

Google Scholar

[4] E. Tasci, The Use of Synthetic Wollastonite in Wall Tile Glazes, J. Aust. Ceram. Soc. 50 (2014) 43-51.

Google Scholar

[5] Y.H. Yun, S.B. Kim, B.A. Kang, Y.W. Lee, J.S. Oh, K.S. Hwang, β-Wollastonite Reinforced Glass-Ceramics Prepared From Waste Fluorescent Glass and Calcium Carbonate, J. Mater. Process. Technol. 178 (2006) 61-66.

DOI: 10.1016/j.jmatprotec.2005.11.021

Google Scholar

[6] J.R. Jones, L.L. Hench, Regeneration of trabecular bone using porous ceramics, Curr. Opin. Solid State Mater. Sci. 7 (2003) 301-307.

DOI: 10.1016/j.cossms.2003.09.012

Google Scholar

[7] S. Deville, Freeze-casting of porous biomaterials: Structure, properties and opportunities, Materials 3 (2010) 1913-(1927).

DOI: 10.3390/ma3031913

Google Scholar

[8] W.F. Wolkers, J.M. Walker, Cryopreservation and Freeze-Drying Protocols, third ed., Springer, UK, (2015).

Google Scholar

[9] R. Morsy, R. Abuelkhair, T. Elnimr, Synthesis of microcrystalline wollastonite bioceramics and evolution of bioactivity, Silicon (2014) 1-5.

DOI: 10.1007/s12633-014-9243-x

Google Scholar

[10] L.Z. Pei, L.J. Yang, Y. Yang, C.G. Fan, W.Y. Yin, J. Chen, Q.F. Zhang, A green and facile route to synthesize calcium silicate nanowires, Mater. Charact. 61 (2010) 1281-1285.

DOI: 10.1016/j.matchar.2010.07.002

Google Scholar

[11] T. Kokubo, H. Takadama, How useful is SBF in predicting in vivo bone bioactivity?, Biomaterials 27 (2006) 2907-2915.

DOI: 10.1016/j.biomaterials.2006.01.017

Google Scholar

[12] E. F. Nordstrand, A. N. Dibbs, A. J. Eraker, U. J. Gibson, Alkaline oxide interface modifiers for silicon fiber production, Opt. Mater. Express 3 (2013) 651-656.

DOI: 10.1364/ome.3.000651

Google Scholar

[13] X. Liu, C. Ding, Morphology of apatite formed on surface of wollastonite coating soaked in simulate body fluid, Mater. Lett. 57 (2002) 652-655.

DOI: 10.1016/s0167-577x(02)00848-0

Google Scholar

[14] X. Liu, C. Ding, P.K. Chu, Mechanism of apatite formation on wollastonite coatings in simulated body fluids, Biomaterials 25 (2004) 1755–1761.

DOI: 10.1016/j.biomaterials.2003.08.024

Google Scholar

[15] M. Mami, A. Lucas-Girot, H. Oudadesse, R. Dorbez-Sridi, F. Mezahi, E. Dietrich, Investigation of the surface reactivity of a sol-gel derived glass in the ternary system SiO2-CaO-P2O5, Appl. Surf. Sci. 254 (2008) 7386-7393.

DOI: 10.1016/j.apsusc.2008.05.340

Google Scholar

[16] M. Mozafari, F. Moztarzadeh, M. Tahriri, Investigation of the physico-chemical reactivity of a mesoporous bioactive SiO2-CaO-P2O5 glass in simulated body fluid, J. Non. Cryst. Solids 356 (2010) 1470-1478.

DOI: 10.1016/j.jnoncrysol.2010.04.040

Google Scholar

[17] Y. Li, W. Weng, In vitro synthesis and characterization of amorphous calcium phosphates with various Ca/P atomic ratios, J. Mater. Sci. Mater. Med. 18 (2007) 2303-2308.

DOI: 10.1007/s10856-007-3132-4

Google Scholar

[18] S.V. Dorozhkin, Amorphous calcium (ortho)phosphates, Acta Biomater. 6 (2010) 4457-4475.

DOI: 10.1016/j.actbio.2010.06.031

Google Scholar

[19] S. Jebahi, H. Oudadesse, E. Wers, J. Elleuch, H. Elfekih, H. Keskes, X. Vuong, Effect of pH and ionic exchange on the reactivity of bioglass/chitosan composites used as a bone graft substitute, Int. J. Chem. Mol. Nucl. Mater. Metall. Eng. 7 (2013).

Google Scholar