Porous Silk Fibroin/Alpha Tricalcium Phosphate Composite Scaffolds for Bone Tissue Engineering: A Preliminary Study

Article Preview

Abstract:

Scaffolds with mechanical properties that mimic the tissue to be restored are critical to maintain the morphology and function of a scaffold after implantation and during tissue regeneration. Silk fibroin (SF), a protein from the Bombyx mori silk worm cocoon, is currently employed in the biomedical field and tissue engineering. The objective of this study was to construct three-dimensional porous silk fibroin/alpha tricalcium phosphate scaffolds for bone tissue engineering application. The scaffolds were fabricated using a solvent casting and salt leaching technique. The hybrid strain of degummed Thai silk fibroin, Nangnoi Srisaket 1 x Mor, was dissolved in hexafluoroisopropanol at 16% (w/v). Alpha tricalcium phosphate (α-TCP) was incorporated to produce 4, 8, 12, and 16 wt% solution and sucrose (particle size 250-450 μm; sucrose/silk fibroin = 8.5/1 w/w) was used as a porogen. The microstructure and pore size, calcium and phosphorus contents, and compressive modulus were evaluated. The scanning electron microscope images revealed the microstructure of scaffolds to be square shaped with continuous interconnected pores. The average pore size of the scaffolds was 265.70 + 67.45 μm. The scaffolds containing 8% (w/w) α-TCP exhibited the highest compressive modulus (64.84 + 16.65 kPa) and the highest calcium content. The results suggested that the scaffolds containing α-TCP may be a potential candidate for application in bone tissue engineering applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

164-169

Citation:

Online since:

May 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G.H. Altman, F. Diaz, C. Jakuba, T. Calabro, R.L. Horan, J. Chen, H. Lu, J. Richmond, D.L. Kaplan, Silk-based biomaterials, Biomaterials 24 (2003) 401-416.

DOI: 10.1016/s0142-9612(02)00353-8

Google Scholar

[2] Y. Wang, D.D. Rudym, A. Walsh, L. Abrahamsen, H.J. Kim, H.S. Kim, C. Kirker-Head, D.L. Kaplan, In vivo degradation of three-dimensional silk fibroin scaffolds, Biomaterials 29 ( 2008) 3415-3428.

DOI: 10.1016/j.biomaterials.2008.05.002

Google Scholar

[3] J. Qu, D. Wang, H. Wang, Y. Dong, F. Zhang, B. Zuo, H. Zhang, Electrospun silk fibroin nanofibers in different diameters support neurite outgrowth and promote astrocyte migration, J. Biomed. Mater. Res. A. 101 (2013) 2667-2678.

DOI: 10.1002/jbm.a.34551

Google Scholar

[4] Y. Ruan, H. Lin, J. Yao, Z. Chen, Z. Shao, Preparation of 3D fibroin/chitosan blend porous scaffold for tissue engineering via a simplified method, Macromol. Biosci. 11 (2011) 419-426.

DOI: 10.1002/mabi.201000392

Google Scholar

[5] L. Uebersax, H. Hagenmüller, S. Hofmann, E. Gruenblatt, R. Müller, G. Vunjak-Novakovic, D.L. Kaplan, H.P. Merkle, L. Meinel, Effect of scaffold design on bone morphology in vitro, Tissue. Eng. 12 (2006) 3417-3429.

DOI: 10.1089/ten.2006.12.3417

Google Scholar

[6] K.H. Kim, L. Jeong, H.N. Park, S.Y. Shin, W.H. Park, S.C. Lee, T.I. Kim, Y.J. Park, Y.J. Seol, Y.M. Lee, Y. Ku, I.C. Rhyu, S.B. Han, C.P. Chung, Biological efficacy of silk fibroin nanofiber membrane for guided bone regeneration, J. Biotechnol. 120 (2005).

DOI: 10.1016/j.jbiotec.2005.06.033

Google Scholar

[7] S.A. Oh, G.S. Lee, J.H. Park, Osteoclastic cell behaviors affected by the α-tricalcium phosphate based bone cements, J. Mater. Sci. Mater. Med. 21 (2010) 3019-3027.

DOI: 10.1007/s10856-010-4152-z

Google Scholar

[8] J.L. de Moraes Machado, I.C. Giehl, N.B. Nardi, L.A. dos Santos, Evaluation of scaffolds based on α-tricalcium phosphate cements for tissue engineering application, IEEE. Trans. Biomed. Eng. 58 (2011) 1814-1819.

DOI: 10.1109/tbme.2011.2117425

Google Scholar

[9] Y. Qu, Y. Yang, J. Li, Z. Chen, J. Li, K. Tang, Y. Man, Preliminary evaluation of a novel strong/osteoinductive calcium phosphate cement, J. Biomater. Appl. 26 (2011) 311-325.

DOI: 10.1177/0885328210371241

Google Scholar

[10] C. Correia, S. Bhumiratana, L.P. Yan, A.L. Oliveira, J.M. Gimble, D.N. Rockwood, D.L. Kaplan, R.A. Sousa, R.L. Reis, G. Vunjak-Novakovic, Development of silk-based scaffolds for tissue engineering of bone from human adipose-derived stem cells, Acta. Biomaterialia. 8 (2012).

DOI: 10.1016/j.actbio.2012.03.019

Google Scholar

[11] B.W. Thimm, S. Wüst, S. Hofmann, H. Hagenmüller, R. Müller, Initial cell pre-cultivation can maximize ECM mineralization by human mesenchymal stem cells on silk fibroin scaffolds, Acta. Biomaterialia. 7 (2011) 2218-2228.

DOI: 10.1016/j.actbio.2011.02.004

Google Scholar

[12] S. Bhumiratana, W.L. Grayson, A. Castaneda, D.N. Rockwood, E.S. Gil, D.L. Kaplan, G. Vunjak-Novakovic, Nucleation and growth of mineralized bone matrix on silk-hydroxyapatite composite scaffolds, Biomaterials 32 (2011) 2812-2820.

DOI: 10.1016/j.biomaterials.2010.12.058

Google Scholar

[13] K. Makaya, S. Terada, K. Ohgo, T. Asakura, Comparative study of silk fibroin porous scaffolds derived from salt/ water and sucrose/ hexafluoroisopropanol in cartilage formation, J. Biosci. Bioeng. 108 (2009) 68-75.

DOI: 10.1016/j.jbiosc.2009.02.015

Google Scholar

[14] D.N. Rockwood, R.C. Preda, T. Yücel, X. Wang, M.L. Lovett, D.L. Kaplan, Materials fabrication from Bombyx mori silk fibroin, Nature Protocols 6 (2011) 1612-1631.

DOI: 10.1038/nprot.2011.379

Google Scholar

[15] M. Kitamura, C. Ohtsuki, S. Ogata, M. Kamitakahara, M. Tanihara, Microstructure and bioresorbable properties of α-TCP ceramic porous body fabricated by direct casting method, Materials Transactions 45 (2004) 983-988.

DOI: 10.2320/matertrans.45.983

Google Scholar

[16] V. Karageorgiou, D.L. Kaplan, Porosity of 3D biomaterial scaffolds and osteogenesis, Biomaterials 26 (2005) 5474-5491.

DOI: 10.1016/j.biomaterials.2005.02.002

Google Scholar

[17] L.P. Yan, J.M. Oliveira, A.L. Oliveira, R.L. Reis, In vitro evaluation of the biological performance of macro/micro-porous silk fibroin and silk-nano calcium phosphate scaffolds, J. Biomed. Mater. Res. B Appl. Biomater. 28 (2014) 1-11.

DOI: 10.1002/jbm.b.33267

Google Scholar

[18] Y. Zhang, C. Wu, T. Friis, Y. Xiao, The osteogenic properties of CaP/silk composite scaffolds, Biomaterials 31 (2010) 2848-2856.

DOI: 10.1016/j.biomaterials.2009.12.049

Google Scholar

[19] L.P. Yan, J. Silva-Correia, C. Correia, S.G. Caridade, E.M. Fernandes, R.A. Sousa, J. F. Mano, J.M. Oliveira, A.L. Oliveira, R.L. Reis, Bioactive macro/micro porous silk fibroin/nano-sized calcium phosphate scaffolds with potential for bone-tissue-engineering applications, Nanomedicine 8 (2015).

DOI: 10.2217/nnm.12.118

Google Scholar