[1]
E. García-Gareta, J.C. Melanie, B.W. Gordon, Osteoinduction of bone grafting materials for bone repair and regeneration, Bone. 81 (2015) 112-121.
DOI: 10.1016/j.bone.2015.07.007
Google Scholar
[2]
J.F.A. Valente, V.M. Gaspar, B.P. Antunes, P. Countinho, I.J. Correia, Microencapsulated chitosan-dextran sulfate nanoparticles for controled delivery of bioactive molecules and cells in bone regeneration, Polym. J. 54 (2013) 5-15.
DOI: 10.1016/j.polymer.2012.10.032
Google Scholar
[3]
M. -S. Scholz, J.P. Blanchfield, L.D. Bloom, B.H. Coburn, M. Elkington, J.D. Fuller, M.E. Gilbert, S.A. Muflahi, M.F. Pernice, S.I. Rae, J.A. Trevarthen, S.C. White, P.M. Weaver, I.P. Bond, The use of composite materials in modern orthopaedic medicine and prosthetic devices: A review, Compos. Sci. Technol. 71 (2011).
DOI: 10.1016/j.compscitech.2011.08.017
Google Scholar
[4]
J. Glowacki and S. Mizuno, Collagen scaffolds for tissue engineering, Biopolym. 89 (2008) 338-344.
Google Scholar
[5]
X. Lian, H. Liu, X. Wang, S. Xu, F. Cui, X. Bai, Antibacterial and biocompatible properties of vancomycin-loaded nano-hydroxyapatite/collagen/poly (lactic acid) bone substitute, Prog. Nat. Sci. 23 (2013) 549-556.
DOI: 10.1016/j.pnsc.2013.11.003
Google Scholar
[6]
S. Hesaraki, F. Moztarzadeh, N. Nezafati, Evaluation of a bioceramic-based nanocomposite material for controlled delivery of a non-steroidal anti-inflammatory drug, Med. Eng. Phys. 31 (2009) 1205-1213.
DOI: 10.1016/j.medengphy.2009.07.019
Google Scholar
[7]
A.R. Unnithan, A.R. K Sasikala, P. Murugesan, M. Gurusamy, D. Wu, C.H. Park, C.S. Kim, Electrospun polyurethane-dextran nanofiber mats loaded with Estradiol for post-menopausal wound dressing, Int. J. Biol. Macromol. 77 (2015) 1-8.
DOI: 10.1016/j.ijbiomac.2015.02.044
Google Scholar
[8]
R.C. Barbaresso, I. Rau, R.G. Zgarian, A. Meghea, M.V. Ghica, Niflumic acid-collagen delivery systems used as anti-inflammatory drugs and analgesics in dentistry, C. R. Chimie. 17 (2014) 12-17.
DOI: 10.1016/j.crci.2013.07.007
Google Scholar
[9]
I. Antoniac, M.D. Vranceanu , A. Antoniac, The influence of the magnesium powder used as reinforcement material on the properties of some collagen based composite biomaterials, JOAM, 15(7-8), (2013) 667-672.
Google Scholar
[10]
D. Williams, A reappraisal of biomaterials science, Med. Device Technol. 17 (2006) 8-9.
Google Scholar
[11]
D. Mushahary, C. Wen, J.M. Kumar, J. Lin, N. Harishankar, P. Hodgson, G. Pande, Y. Li, Collagen type-I leads to in vivo matrix mineralization and secondary stabilization of Mg-Zr-Ca alloy implants, Colloids Surf. B: Biointerfaces. 122 (2014).
DOI: 10.1016/j.colsurfb.2014.08.005
Google Scholar
[12]
S.Z. Khalajabadi, M.R.A. Kadir, S. Izman, M.Z.M. Yusop, Facile fabrication of hydrophobic surfaces on mechanically alloyed-Mg/HA/TiO2/MgO bionanocomposites, Mater. Des. 88 (2015) 1223-1233.
DOI: 10.1016/j.apsusc.2014.10.158
Google Scholar
[13]
H. Li, S. Pang, Y. Liu, L. Sun, P.K. Liaw, T. Zhang, Biodegradable Mg–Zn–Ca–Sr bulk metallic glasses with enhanced corrosion performance for biomedical applications, Mater. Des. 67 (2015) 9-19.
DOI: 10.1016/j.matdes.2014.10.085
Google Scholar
[14]
I. Antoniac, M. Miculescu, M. Dinu, Metallurgical characterization of some magnesium alloys for medical applications, SOLID STATE PHENOMENA, 188, (2012) 109-113.
DOI: 10.4028/www.scientific.net/ssp.188.109
Google Scholar
[15]
M.J. Shen, X.J. Wang, C.D. Li, M.F. Zhang, X.S. Hu, M.Y. Zheng, K. Wu, Effect of submicron size SiC particles on microstructure and mechanical properties of AZ31B magnesium matrix composites, Mater. Des. 54 (2014) 436-442.
DOI: 10.1016/j.matdes.2013.08.078
Google Scholar
[16]
S. Jayalakshmi, S. Sahu, S. Sankaranarayanan, S. Gupta, M. Gupta, Development of novel Mg–Ni60Nb40 amorphous particle reinforced composites with enhanced hardness and compressive response, Mater. Des. 53(2014) 849-855.
DOI: 10.1016/j.matdes.2013.07.022
Google Scholar
[17]
X. Gu,W. Zhou, Y. Zheng, L. Dong, Y. Xi, D. Chai, Microstructure, mechanical property, bio-corrosion and cytotoxicity evaluations of Mg/HA composites, Mater. Sci. Eng. C. 30 (2010) 827-832.
DOI: 10.1016/j.msec.2010.03.016
Google Scholar
[18]
I. Antoniac, Biodegradability of some collagen sponges reinforced with different bioceramics, KEM, 587 (2014) 179-184.
DOI: 10.4028/www.scientific.net/kem.587.179
Google Scholar
[19]
X. Wang, L.H. Dong, J.T. Li, X.L. Li, X.L. Ma, Y.F. Zheng, Microstructure, mechanical property and corrosion behavior of interpenetrating (HA + β-TCP)/MgCa composite fabricated by suction casting, Mater. Sci. Eng. C. 33 (2013) 4266-4273.
DOI: 10.1016/j.msec.2013.06.018
Google Scholar
[20]
E. Leonardi, G. Ciapetti, N. Baldini, G. Novajra, E. Verné, F. Baino, C. Vitale-Brovarone, Response of human bone marrow stromal cells to a resorbable P2O5-SiO2-CaO-MgO-Na2O-K2O phosphate glass ceramic for tissue engineering applications, Acta Biomaterialia 6 (2010).
DOI: 10.1016/j.actbio.2009.07.017
Google Scholar
[21]
D.J. Hickey, B. Ercan, L. Sun, T.J. Webster, Adding MgO nanoparticles to hydroxyapatite-PLLA nanocomposites for improved bone tissue engineering applications, Acta Biomaterialia 14 (2015) 175-184.
DOI: 10.1016/j.actbio.2014.12.004
Google Scholar
[22]
M. Khandaker, Y. Li, T. Morris, Micro and nanoMgO particles for the improvement of fracture toughness of bone-cement interfaces, J. Biomech. 46 (2013) 1035-1039.
DOI: 10.1016/j.jbiomech.2012.12.006
Google Scholar
[23]
M.D. Vranceanu, I. Antoniac, F. Miculescu, R. Saban, The influence of the ceramic phase on the porosity of some biocomposites with collagen matrix used as bone substitutes, JOAM, 14 (7-8), (2012), 671–677.
Google Scholar
[24]
T. Petreus, B.A. Stoica, O. Petreus, A. Goriuc, C.E. Cotrutz, I.V. Antoniac, L. Barbu-Tudoran, Preparation and cytocompatibility evaluation for hydrosoluble phosphorous acid-derivatized cellulose as tissue engineering scaffold material, JMS-MM, 25(4), (2014).
DOI: 10.1007/s10856-014-5146-z
Google Scholar
[25]
P. Carbonell-Blasco, J.M. Martín-Martínez, I. Antoniac, Synthesis and characterization of polyurethane sealants containing rosin intended for sealing defect in annulus for disc regeneration, International Journal of Adhesion and Adhesives, 42, (2013).
DOI: 10.1016/j.ijadhadh.2012.11.011
Google Scholar
[26]
I.C. Stancu, D.M. Dragusin, E. Vasile, R. Trusca, I. Antoniac, D.S. Vasilescu, Porous calcium alginate-gelatin interpenetrated matrix and its biomineralization potential, JMS-MM, 22(3), (2011) 451-460.
DOI: 10.1007/s10856-011-4233-7
Google Scholar
[27]
T. Zecheru, T. Rotariu, E. Rusen, B. Marculescu, F. Miculescu, L. Alexandrescu, I. Antoniac, I.C. Stancu, Poly(2- hydroxyethyl methacrylate-co-dodecyl methacrylate-co-acrylic acid): synthesis, physico-chemical characterisation and nafcillin carrier, JMS-MM, 21(10), (2010).
DOI: 10.1007/s10856-010-4129-y
Google Scholar
[28]
J. Holmbom, A. Sodergard, E. Ekholm, Long-term evaluation of porous poly(epsilon-caprolactone-co-L-lactide) as a bone-filling material, J. Biomed. Mater. Res. A. 75 (2005) 308-315.
DOI: 10.1002/jbm.a.30418
Google Scholar
[29]
J.C. Fricain, S. Schlaubitz, C. Le Visage, I. Arnault, S.M. Derkaoui, R. Siadous, S. Catros, C. Lalande, R. Bareille, M. Renard, T. Fabre, S. Cornet, M. Durand, A. Léonard, N. Sahraoui, D. Letourneur, J. Amédée, A nano-hydroxyapatite - Pullulan /dextran polysaccharide composite macroporous material for bone tissue engineering, Biomaterials 34 (2013).
DOI: 10.1016/j.biomaterials.2013.01.049
Google Scholar
[30]
S.A. Sell, P.S. Wolfe, K. Garg, J.M. McCool, I.A. Rodriguez, G.L. Bowlin, The use of natural polymers in tissue engineering: a focus on electrospun extracellular matrix analogues, Polymers 2 (2010) 522-553.
DOI: 10.3390/polym2040522
Google Scholar
[31]
E. García-Gareta, M.J. Coathup, G.W. Blunn, Osteoinduction of bone grafting materials for bone repair and regeneration, Bone 81 (2015) 112-121.
DOI: 10.1016/j.bone.2015.07.007
Google Scholar
[32]
R. Yunus Basha, T.S.S. Kumar, M. Doble, Design of biocomposite materials for bone tissue regeneration, Mater. Sci. Eng., C 57 (2015) 452-463.
DOI: 10.1016/j.msec.2015.07.016
Google Scholar
[33]
A. Ficai, M.G. Albu, M. Barsan, M. Sonmez, D. Ficai, V. Trandafir, Collagen hydrolysate based collagen/hydroxyapatite composite materials, J. Mol. Struct, 1037 (2013) 154-159.
DOI: 10.1016/j.molstruc.2012.12.052
Google Scholar
[34]
C. Xu, P. Su, X. Chen, Y. Meng, W. Yu, A.P. Xiang, Y. Wang, Biocompatibility and osteogenesis of biomimetic Bioglass-Collagen-Phosphatidylserine composite scaffolds for bone tissue engineering, Biomaterials 32 (2011) 1051-1058.
DOI: 10.1016/j.biomaterials.2010.09.068
Google Scholar
[35]
E. Quinlan, S. Partap, M.M. Azevedo, G. Jell, M.M. Stevens, F.J. O'Brien, Hypoxia-mimicking bioactive glass/collagen glycosaminoglycan composite scaffolds to enhance angiogenesis and bone repair, Biomaterials 52 (2015) 358-366.
DOI: 10.1016/j.biomaterials.2015.02.006
Google Scholar
[36]
M.G. Albu, Collagen gels and matrices for biomedical applications, Lambert Academic Publishing, Saarbrücken, (2011) 23-24.
Google Scholar
[37]
M.G. Albu, M.V. Ghica, Spongious collagen-minocycline delivery systems, Farmacia. 63 (2015) 20-25.
Google Scholar