Collagen-Niflumic Acid Spongious Matrices for Bone Repairing

Article Preview

Abstract:

Collagen is one of the most used biomaterials for bone defects repair, proving good results in tissue reconstruction research, and also its features recommend it as a very attractive drug delivery scaffold for local treatment of the affected osseous tissue. The inflammatory response is a common reaction that occurs in bone disease, the topical administration of anti-inflammatory drugs (NSAIDs) representing a reliable strategy to overcome this issue. The purpose of this paper was the physical-chemical and biopharmaceutical evaluation of some spongious matrices consisting of collagen as release support and niflumic acid as drug NSAID model, usable in bone tissue regeneration. Type I fibrillar collagen gel (2.4% w/w, 3.5 pH) was extracted from calf hide by the technology currently used in Collagen Department of Division Leather and Footwear Research Institute. The collagen sponges were obtained by freeze-drying of gels adjusted at 1% and 7.3 pH, with different dextran (0; 10 and 20%) and MgO (0; 30 and 60%) concentrations (reported to dry collagen), with 0.5% and without niflumic acid (NA) (reported to gel) and the same amount of glutaraldehyde (0.5% reported to collagen dry substance). The sponges were evaluated through water absorption, FT-IR spectroscopy and optical microscopy. In vitro NA release from the designed sponges was carried out using a sandwich device adapted to a dissolution equipment. Power law kinetic model was applied to explain drug release from the tested formulations. The NA release from collagen sponges showed a non-Fickian transport mechanism. The addition in different concentrations of dextran and MgO leads to more compact structures and improves stability of collagenic matrices. Our results showed that the designed support could be adequate for treating the inflammation associated with a bone defect in orthopedic surgery.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

170-177

Citation:

Online since:

May 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E. García-Gareta, J.C. Melanie, B.W. Gordon, Osteoinduction of bone grafting materials for bone repair and regeneration, Bone. 81 (2015) 112-121.

DOI: 10.1016/j.bone.2015.07.007

Google Scholar

[2] J.F.A. Valente, V.M. Gaspar, B.P. Antunes, P. Countinho, I.J. Correia, Microencapsulated chitosan-dextran sulfate nanoparticles for controled delivery of bioactive molecules and cells in bone regeneration, Polym. J. 54 (2013) 5-15.

DOI: 10.1016/j.polymer.2012.10.032

Google Scholar

[3] M. -S. Scholz, J.P. Blanchfield, L.D. Bloom, B.H. Coburn, M. Elkington, J.D. Fuller, M.E. Gilbert, S.A. Muflahi, M.F. Pernice, S.I. Rae, J.A. Trevarthen, S.C. White, P.M. Weaver, I.P. Bond, The use of composite materials in modern orthopaedic medicine and prosthetic devices: A review, Compos. Sci. Technol. 71 (2011).

DOI: 10.1016/j.compscitech.2011.08.017

Google Scholar

[4] J. Glowacki and S. Mizuno, Collagen scaffolds for tissue engineering, Biopolym. 89 (2008) 338-344.

Google Scholar

[5] X. Lian, H. Liu, X. Wang, S. Xu, F. Cui, X. Bai, Antibacterial and biocompatible properties of vancomycin-loaded nano-hydroxyapatite/collagen/poly (lactic acid) bone substitute, Prog. Nat. Sci. 23 (2013) 549-556.

DOI: 10.1016/j.pnsc.2013.11.003

Google Scholar

[6] S. Hesaraki, F. Moztarzadeh, N. Nezafati, Evaluation of a bioceramic-based nanocomposite material for controlled delivery of a non-steroidal anti-inflammatory drug, Med. Eng. Phys. 31 (2009) 1205-1213.

DOI: 10.1016/j.medengphy.2009.07.019

Google Scholar

[7] A.R. Unnithan, A.R. K Sasikala, P. Murugesan, M. Gurusamy, D. Wu, C.H. Park, C.S. Kim, Electrospun polyurethane-dextran nanofiber mats loaded with Estradiol for post-menopausal wound dressing, Int. J. Biol. Macromol. 77 (2015) 1-8.

DOI: 10.1016/j.ijbiomac.2015.02.044

Google Scholar

[8] R.C. Barbaresso, I. Rau, R.G. Zgarian, A. Meghea, M.V. Ghica, Niflumic acid-collagen delivery systems used as anti-inflammatory drugs and analgesics in dentistry, C. R. Chimie. 17 (2014) 12-17.

DOI: 10.1016/j.crci.2013.07.007

Google Scholar

[9] I. Antoniac, M.D. Vranceanu , A. Antoniac, The influence of the magnesium powder used as reinforcement material on the properties of some collagen based composite biomaterials, JOAM, 15(7-8), (2013) 667-672.

Google Scholar

[10] D. Williams, A reappraisal of biomaterials science, Med. Device Technol. 17 (2006) 8-9.

Google Scholar

[11] D. Mushahary, C. Wen, J.M. Kumar, J. Lin, N. Harishankar, P. Hodgson, G. Pande, Y. Li, Collagen type-I leads to in vivo matrix mineralization and secondary stabilization of Mg-Zr-Ca alloy implants, Colloids Surf. B: Biointerfaces. 122 (2014).

DOI: 10.1016/j.colsurfb.2014.08.005

Google Scholar

[12] S.Z. Khalajabadi, M.R.A. Kadir, S. Izman, M.Z.M. Yusop, Facile fabrication of hydrophobic surfaces on mechanically alloyed-Mg/HA/TiO2/MgO bionanocomposites, Mater. Des. 88 (2015) 1223-1233.

DOI: 10.1016/j.apsusc.2014.10.158

Google Scholar

[13] H. Li, S. Pang, Y. Liu, L. Sun, P.K. Liaw, T. Zhang, Biodegradable Mg–Zn–Ca–Sr bulk metallic glasses with enhanced corrosion performance for biomedical applications, Mater. Des. 67 (2015) 9-19.

DOI: 10.1016/j.matdes.2014.10.085

Google Scholar

[14] I. Antoniac, M. Miculescu, M. Dinu, Metallurgical characterization of some magnesium alloys for medical applications, SOLID STATE PHENOMENA, 188, (2012) 109-113.

DOI: 10.4028/www.scientific.net/ssp.188.109

Google Scholar

[15] M.J. Shen, X.J. Wang, C.D. Li, M.F. Zhang, X.S. Hu, M.Y. Zheng, K. Wu, Effect of submicron size SiC particles on microstructure and mechanical properties of AZ31B magnesium matrix composites, Mater. Des. 54 (2014) 436-442.

DOI: 10.1016/j.matdes.2013.08.078

Google Scholar

[16] S. Jayalakshmi, S. Sahu, S. Sankaranarayanan, S. Gupta, M. Gupta, Development of novel Mg–Ni60Nb40 amorphous particle reinforced composites with enhanced hardness and compressive response, Mater. Des. 53(2014) 849-855.

DOI: 10.1016/j.matdes.2013.07.022

Google Scholar

[17] X. Gu,W. Zhou, Y. Zheng, L. Dong, Y. Xi, D. Chai, Microstructure, mechanical property, bio-corrosion and cytotoxicity evaluations of Mg/HA composites, Mater. Sci. Eng. C. 30 (2010) 827-832.

DOI: 10.1016/j.msec.2010.03.016

Google Scholar

[18] I. Antoniac, Biodegradability of some collagen sponges reinforced with different bioceramics, KEM, 587 (2014) 179-184.

DOI: 10.4028/www.scientific.net/kem.587.179

Google Scholar

[19] X. Wang, L.H. Dong, J.T. Li, X.L. Li, X.L. Ma, Y.F. Zheng, Microstructure, mechanical property and corrosion behavior of interpenetrating (HA + β-TCP)/MgCa composite fabricated by suction casting, Mater. Sci. Eng. C. 33 (2013) 4266-4273.

DOI: 10.1016/j.msec.2013.06.018

Google Scholar

[20] E. Leonardi, G. Ciapetti, N. Baldini, G. Novajra, E. Verné, F. Baino, C. Vitale-Brovarone, Response of human bone marrow stromal cells to a resorbable P2O5-SiO2-CaO-MgO-Na2O-K2O phosphate glass ceramic for tissue engineering applications, Acta Biomaterialia 6 (2010).

DOI: 10.1016/j.actbio.2009.07.017

Google Scholar

[21] D.J. Hickey, B. Ercan, L. Sun, T.J. Webster, Adding MgO nanoparticles to hydroxyapatite-PLLA nanocomposites for improved bone tissue engineering applications, Acta Biomaterialia 14 (2015) 175-184.

DOI: 10.1016/j.actbio.2014.12.004

Google Scholar

[22] M. Khandaker, Y. Li, T. Morris, Micro and nanoMgO particles for the improvement of fracture toughness of bone-cement interfaces, J. Biomech. 46 (2013) 1035-1039.

DOI: 10.1016/j.jbiomech.2012.12.006

Google Scholar

[23] M.D. Vranceanu, I. Antoniac, F. Miculescu, R. Saban, The influence of the ceramic phase on the porosity of some biocomposites with collagen matrix used as bone substitutes, JOAM, 14 (7-8), (2012), 671–677.

Google Scholar

[24] T. Petreus, B.A. Stoica, O. Petreus, A. Goriuc, C.E. Cotrutz, I.V. Antoniac, L. Barbu-Tudoran, Preparation and cytocompatibility evaluation for hydrosoluble phosphorous acid-derivatized cellulose as tissue engineering scaffold material, JMS-MM, 25(4), (2014).

DOI: 10.1007/s10856-014-5146-z

Google Scholar

[25] P. Carbonell-Blasco, J.M. Martín-Martínez, I. Antoniac, Synthesis and characterization of polyurethane sealants containing rosin intended for sealing defect in annulus for disc regeneration, International Journal of Adhesion and Adhesives, 42, (2013).

DOI: 10.1016/j.ijadhadh.2012.11.011

Google Scholar

[26] I.C. Stancu, D.M. Dragusin, E. Vasile, R. Trusca, I. Antoniac, D.S. Vasilescu, Porous calcium alginate-gelatin interpenetrated matrix and its biomineralization potential, JMS-MM, 22(3), (2011) 451-460.

DOI: 10.1007/s10856-011-4233-7

Google Scholar

[27] T. Zecheru, T. Rotariu, E. Rusen, B. Marculescu, F. Miculescu, L. Alexandrescu, I. Antoniac, I.C. Stancu, Poly(2- hydroxyethyl methacrylate-co-dodecyl methacrylate-co-acrylic acid): synthesis, physico-chemical characterisation and nafcillin carrier, JMS-MM, 21(10), (2010).

DOI: 10.1007/s10856-010-4129-y

Google Scholar

[28] J. Holmbom, A. Sodergard, E. Ekholm, Long-term evaluation of porous poly(epsilon-caprolactone-co-L-lactide) as a bone-filling material, J. Biomed. Mater. Res. A. 75 (2005) 308-315.

DOI: 10.1002/jbm.a.30418

Google Scholar

[29] J.C. Fricain, S. Schlaubitz, C. Le Visage, I. Arnault, S.M. Derkaoui, R. Siadous, S. Catros, C. Lalande, R. Bareille, M. Renard, T. Fabre, S. Cornet, M. Durand, A. Léonard, N. Sahraoui, D. Letourneur, J. Amédée, A nano-hydroxyapatite - Pullulan /dextran polysaccharide composite macroporous material for bone tissue engineering, Biomaterials 34 (2013).

DOI: 10.1016/j.biomaterials.2013.01.049

Google Scholar

[30] S.A. Sell, P.S. Wolfe, K. Garg, J.M. McCool, I.A. Rodriguez, G.L. Bowlin, The use of natural polymers in tissue engineering: a focus on electrospun extracellular matrix analogues, Polymers 2 (2010) 522-553.

DOI: 10.3390/polym2040522

Google Scholar

[31] E. García-Gareta, M.J. Coathup, G.W. Blunn, Osteoinduction of bone grafting materials for bone repair and regeneration, Bone 81 (2015) 112-121.

DOI: 10.1016/j.bone.2015.07.007

Google Scholar

[32] R. Yunus Basha, T.S.S. Kumar, M. Doble, Design of biocomposite materials for bone tissue regeneration, Mater. Sci. Eng., C 57 (2015) 452-463.

DOI: 10.1016/j.msec.2015.07.016

Google Scholar

[33] A. Ficai, M.G. Albu, M. Barsan, M. Sonmez, D. Ficai, V. Trandafir, Collagen hydrolysate based collagen/hydroxyapatite composite materials, J. Mol. Struct, 1037 (2013) 154-159.

DOI: 10.1016/j.molstruc.2012.12.052

Google Scholar

[34] C. Xu, P. Su, X. Chen, Y. Meng, W. Yu, A.P. Xiang, Y. Wang, Biocompatibility and osteogenesis of biomimetic Bioglass-Collagen-Phosphatidylserine composite scaffolds for bone tissue engineering, Biomaterials 32 (2011) 1051-1058.

DOI: 10.1016/j.biomaterials.2010.09.068

Google Scholar

[35] E. Quinlan, S. Partap, M.M. Azevedo, G. Jell, M.M. Stevens, F.J. O'Brien, Hypoxia-mimicking bioactive glass/collagen glycosaminoglycan composite scaffolds to enhance angiogenesis and bone repair, Biomaterials 52 (2015) 358-366.

DOI: 10.1016/j.biomaterials.2015.02.006

Google Scholar

[36] M.G. Albu, Collagen gels and matrices for biomedical applications, Lambert Academic Publishing, Saarbrücken, (2011) 23-24.

Google Scholar

[37] M.G. Albu, M.V. Ghica, Spongious collagen-minocycline delivery systems, Farmacia. 63 (2015) 20-25.

Google Scholar