Wollastonite and Calcium Phosphate Biocoatings with Zn- and Cu-Incorporation Produced by a Microarc Oxidation Method

Article Preview

Abstract:

Investigations of wollastonite and calcium phosphate biocoatings with Zn-and Cu-incorporation produced by a microarc oxidation method were presented. Dependences of coating properties on the microarc oxidation parameters were revealed. A variation of the process parameters allowed us to produce wollastonite-calcium phosphate coatings with a plate-like structure, thickness of 25–30 μm, roughness of 2.5–5.0 μm, and enhanced strength properties. Coatings based on substituted hydroxyapatite deposited under voltages of 200–250 V have an X-ray amorphous structure. An increase of oxidation voltage to 300 V leads to the formation of crystalline phases in the coating, such as CaHPO4 and β-Ca2P2O7. The maximum content of 0.4 at% zinc and 0.1 at% copper was obtained for coatings based on Zn-and Cu-substituted hydroxyapatites, consequently, deposited under oxidation voltage of 250 V.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

144-151

Citation:

Online since:

May 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Ma Y., Nie X., Northwood D.O., Hu H., Corrosion and erosion properties of silicate and phosphate coatings on magnesium, Thin Solid Films 469 (2004) 472-477.

DOI: 10.1016/j.tsf.2004.06.168

Google Scholar

[2] Yerokhin A.L., Shatrov A., Samsonov V., Shashkov P., Leyland A., Matthews A., Fatigue properties of keronite coatings on a magnesium alloy, Surf. Coat. Technol. 182 (2004) 78-84.

DOI: 10.1016/s0257-8972(03)00877-6

Google Scholar

[3] Sharkeev Yu.P., Psakhie S.G., Legostaeva E.V., Smolin A. Yu. et. al., Biocomposites based on calcium-phosphate coatings, nanostructured and ultrafine-grained bioinert metals, their biocompatibility and biodegradation, ed. N.Z. Lyakhov, Tomsk, (in Russian) (2014).

Google Scholar

[4] Legostaeva E.V., Sharkeev Yu.P., Epple M., Prymak O., Structure and properties of microarc calcium phosphate coatings on the surface of titanium and zirconium alloys, Russian Physics Journal 56 (2014) 1130-1136.

DOI: 10.1007/s11182-014-0152-7

Google Scholar

[5] Sharkeev Yu.P., Kulyashova K.S., Regularities of calcium-phosphate coating formation on zirconium from electrolyte based on synthesize and biological hydroxyapatite, Izvestia Vuzov. Fizika (in Russian) 56 (2013) 60-65.

DOI: 10.1007/s11182-014-0158-1

Google Scholar

[6] Legostaeva E.V., Sharkeev Yu.P., Epple M., Prymak O., Structure and properties of micro arc calcium phosphate coatings on surface of titanium and zirconium alloys, Izvestia Vuzov. Fizika (in Russian) 56 (2013) 23-28.

DOI: 10.1007/s11182-014-0152-7

Google Scholar

[7] Komarova E.G., Sharkeev Yu.P., Chebodaeva V.V., Influence of microarc oxidation parameters on the roughness and wettability of calcium phosphate coatings, Izvestia Vuzov. Fizika (in Russian) 57 (2014) 171-175.

DOI: 10.4028/www.scientific.net/amr.1097.35

Google Scholar

[8] Lee K-Y., Park M., Kim H-M., Lim Y-J., Chun H-J., Kim H., Moon S-H., Ceramic bioactivity: progress and perspectives, Biomed. Mater. 1 (2006) 31-37.

Google Scholar

[9] Shumakova V.V., Pogrebenkov V.М., Karlov А.V., Kozik V.V., Vereshagin V.I., Hydroxyapatite-wollastonite ceramics, Steklo i Keramika (in Russian) 10 (2000) 18-21.

Google Scholar

[10] Jones J.R., Review of bioactive glass: from hench to hybrids, Acta Biomat. 9 (2013) 4457-4486.

DOI: 10.1016/j.actbio.2012.08.023

Google Scholar

[11] Hijo´n N., Manzano M., Salinas A.J., Vallet-Regi M., Bioactive CaO-SiO2-PDMS coatings on Ti6Al4V substrates, Chem. Mater. 17 (2005) 1591-1596.

DOI: 10.1021/cm048755i

Google Scholar

[12] Dorozhkin S.V., In vitro mineralization of silicon containing calcium phosphate bioceramics, J. Am. Ceram. Soc. 90 (2007) 244-249.

DOI: 10.1111/j.1551-2916.2006.01368.x

Google Scholar

[13] Rodionov I.V., Butovskii K.G., Beidik O.V., Surmenko E.L., Oxide biocoatings with antiseptic and antithrombogenic properties on perosseous fixer in osteosynthesis devices, Biomedicinskaya Radioelektronika (in Russian) 8-9 (2008) 98-101.

Google Scholar

[14] Hu H., Zhang W., Jiang X., Liu X., Ding C., Antibacterial activity and increased bone marrow stem cell functions of Zn-incorporated TiO2 coatings on titanium, Acta Biomat. 8 (2012) 904-915.

DOI: 10.1016/j.actbio.2011.09.031

Google Scholar

[15] Lowe N.M., Fraser W.D., Jackson M.J., Is there a potential therapeutic value of copper and zinc for osteoporosis? Pross. Nutr. Soc. 61 (2002) 181-185.

DOI: 10.1079/pns2002154

Google Scholar

[16] Chaikina M.V., Bulina N.V., Ishchenko A.V., Prosanov I. Yu., Mechanochemical synthesis оf SiO44–-substituted hydroxyapatite. Part I – kinetics of interaction between the components, European J. Inorg. Chem. 2014 (2014) 4803-4809.

DOI: 10.1002/ejic.201402247

Google Scholar

[17] Rudawska A., Jacniacka E., Analysis for determining surface energy uncertainty by the Owens-Wendt method, Int. J. Adhesion and Adhesives 4 (2009) 451-457.

DOI: 10.1016/j.ijadhadh.2008.09.008

Google Scholar

[18] Safronova T.V., Putlyaev V.I., Medical nonorganic materials science in Russia: calcium phosphate materials, Nanosistemy: Fizika, Khimiya, Matematika (in Russian) 4 (2013) 24-47.

Google Scholar

[19] Dorozhkin S.V., Calcium orthophosphates in nature, biology and medicine. Review, Materials 2 (2009) 399-498.

DOI: 10.3390/ma2020399

Google Scholar