[1]
Tig I.A. (2010), Amalgamele dentare – trecut, prezent si viitor. Editura Universităţii din Oradea, ISBN 978-606-10-0109-5, Oradea: 5.
Google Scholar
[2]
Roulet JF. Benefits and disadvantages of tooth-coloured alternatives to amalgam. Journal of Dentistry. 1997; 25(6): 459–473.
DOI: 10.1016/s0300-5712(96)00066-8
Google Scholar
[3]
Lorscheider FL, Vimy MJ, Summers AO. Mercury exposure from silver, tooth firings: emerging evidence questions a traditional dental paradigm. The FASEB Journal. 1995; 9(7): 504–508.
DOI: 10.1096/fasebj.9.7.7737458
Google Scholar
[4]
Guzzi G, Grandi M, Cattaneo C, et al. Dental amalgam and mercury levels in autopsy tissues: food for thought. The American Journal of Forensic Medicine and Pathology. 2006; 27(1): 42–45.
DOI: 10.1097/01.paf.0000201177.62921.c8
Google Scholar
[5]
Sarkar NK, Park JR. Mechanism of improved corrosion resistance of Zn-containing dental amalgams. Journal of Dental Research. 1988; 67(10): 1312–1315.
DOI: 10.1177/00220345880670101301
Google Scholar
[6]
Patterson JE, Weissberg BG, Dennison PJ. Mercury in human breath from dental amalgams. Bulletin of Environmental Contamination and Toxicology. 1985; 34(4): 459–468.
DOI: 10.1007/bf01609761
Google Scholar
[7]
Vimy MJ, Lorscheider FL. Serial measurements of intra-oral air mercury: estimation of daily dose from dental amalgam. Journal of Dental Research. 1985; 64(8): 1072–1075.
DOI: 10.1177/00220345850640081001
Google Scholar
[8]
Vimy MJ, Lorscheider FL. Intra-oral air mercury released from dental amalgam. Journal of Dental Research. 1985; 64(8): 1069–1071.
DOI: 10.1177/00220345850640080901
Google Scholar
[9]
Department of Health and Human Services Public Health Service. Dental amalgam: a scientific review and recommended Public Health Service strategy for research, education and regulation: final report of the subcommittee on risk management of the Committee to Coordinate Environmental Health and Related Programs. 1993, http: /web. health. gov/environment/amalgam1/ct. htm.
DOI: 10.1096/j.1530-6860.1993.tb93357.x
Google Scholar
[10]
Eyeson J, House I, Yang YH, Warnakulasuriya KA. Relationship between mercury levels in blood and urine and complaints of chronic mercury toxicity from amalgam restorations. British Dental Journal. 2010; 208, article E7 discussion 162–163.
DOI: 10.1038/sj.bdj.2010.181
Google Scholar
[11]
Craig RG, Powers JM. Restorative Dental Materials. 11th edition. St Louis, Mo, USA: Mosby; (2002).
Google Scholar
[12]
Berdouses E., Vaidyanathan TK., Dastane A., et al. (1995) Mercury release from dental amalgams: an in vitro study under controlled chewing and brushing in an artificial mouth. J Dent Res; 74: pp.1185-1193.
DOI: 10.1177/00220345950740050701
Google Scholar
[13]
Halbach S. Amalgam tooth fillings and man's mercury burden. (1994) Hum Exp Toxicol; 13: pp.496-501.
DOI: 10.1177/096032719401300708
Google Scholar
[14]
Halbach S. Estimation of mercury dose by a novel quantitation of elemental and inorganic species released from amalgam. (1995) Int Arch Occup Environ Health; 67: pp.295-300.
DOI: 10.1007/bf00385643
Google Scholar
[15]
Sandborgh-Englund G., Nygren AT., Ekstrand J., Elinder C-G. (1996) No evidence of renal toxicity from amalgam fillings. Am J Physiol, 271: pp.941-945.
DOI: 10.1152/ajpregu.1996.271.4.r941
Google Scholar
[16]
Herrstrom P., Schutz A., Raihle G., Holthuis N. (1995) nDental amalgam, low-dose exporsure to mercury and urinary proteins in young swedish men. Arch Environ Health; 50: pp.103-107.
DOI: 10.1080/00039896.1995.9940886
Google Scholar
[17]
Naleway C., Chou H-N., Muller T., et al. (1991) On-site screening for urinary Hg concentrations and correlation with glomerular and renal tubular function. J Pub Health Dent; 51: pp.12-17.
DOI: 10.1111/j.1752-7325.1991.tb02169.x
Google Scholar
[18]
Factor-Litvak P., Hasselgren G., Jacobs D., Begg M., Kline J., Geier J., Mervish N., Schoenholtz S., and Graziano J. (2003).
DOI: 10.1289/ehp.5879
Google Scholar
[19]
Saxe SR., Wekstein MW., Kryscio RJ., et al. (1999) Alzheimer's disease, dental amalgam and mercury. JADA; 130: pp.191-199.
DOI: 10.14219/jada.archive.1999.0168
Google Scholar
[20]
McGrother CW., Dugmore C., Phillips MJ., et al. (1999) Multiple sclerosis, dental caries and fillings: a case-control study. Br Dent J; 187: pp.261-264.
DOI: 10.1038/sj.bdj.4800255a
Google Scholar
[21]
The NMSS Compendium: Heavy Metals (Toxicology) (2000). Available from http: /www. nmss. org/compendium/compend70. html.
Google Scholar
[22]
Mackert JR., Leffel MS., Wagner DA., Powell BJ. (1991) Lymphocyte levels in subjects with and without amalgam restorations. JADA; 122(3): pp.49-53.
DOI: 10.14219/jada.archive.1991.0095
Google Scholar
[23]
Loftenius A., Sandborgh-Englund G., Ekstrand J. (1998) Acute exposure to mercury from amalgam: no short-time effect on the peripheral blood lymphocytes in healthy individuals. J Toxicol Environ Health; 54: pp.547-560.
DOI: 10.1080/009841098158692
Google Scholar
[24]
Jones DW. Exposure or absorption and the crucial question of limits for mercury. Journal of the Canadian Dental Association. 1999; 65(1): 788–792.
Google Scholar
[25]
Jones DW. Putting dental mercury pollution into perspective. British Dental Journal. 2004; 197(4): 175–177.
DOI: 10.1038/sj.bdj.4811564
Google Scholar
[26]
Jones DW. Has dental amalgam been torpedoed and sunk? Journal of Dental Research. 2008; 87(2): 101–102.
DOI: 10.1177/154405910808700203
Google Scholar
[27]
Okabe T, Butts MB, Mitchell RJ. Changes in the microstructures of silver-tin and admixed high-copper amalgams during creep. Journal of Dental Research. 1983; 62(1): 37–43.
DOI: 10.1177/00220345830620010901
Google Scholar
[28]
Jones DW. A Scandinavian tragedy. British Dental Journal. 2008; 204(5): 233–234.
Google Scholar
[29]
Timothy A. DeRouen, Michael D. Martin, Brian G. Leroux, Brenda D. Townes, James S. Woods, Jorge Leitão, Alexandre Castro-Caldas, Henrique Luis, Mario Bernardo, Gail Rosenbaum, Isabel P. Martins (2006).
DOI: 10.1001/jama.295.15.1784
Google Scholar
[30]
U.S. Food and Drug Administration Center for Devices and Radiological Health. (2003) Consumer update: dental amalgams. Available from: www. fda. gov/cdrh/consumer/amalgams. html.
Google Scholar
[31]
United States Food and Drug Administration. Regulation of dental amalgams. 2002, http: /www. fda. gov/NewsEvents/Testimony/ucm115161. htm.
Google Scholar
[32]
U.S. Department of Health and Human Services Working Group on Dental Amalgam, Dental amalgam and alternative restorative materials an update report to the Environmental Health Policy Committee, 1997, http: /web. health. gov/environment/amalgam2/Contents. html.
Google Scholar
[33]
Craig RG. Chap 9. 11th ed. United States: Mosby Inc; 2002. Restorative dental materials.
Google Scholar
[34]
Stein PS, Sullivan J, Haubenreich JE, Osborne PB. Composite resin in medicine and dentistry. J Long Term Eff Med Implants. 2005; 15: 641–54. [PubMed].
DOI: 10.1615/jlongtermeffmedimplants.v15.i6.70
Google Scholar
[35]
Lygre H., Hol PJ., Solhiem E., Moe G. (1999) Organic leachables from polymerbased dental filling materials. Eur J Oral Sci; 107: pp.378-83.
DOI: 10.1046/j.0909-8836.1999.eos107509.x
Google Scholar
[36]
Leyhausen G., Lehmann F., Geurtsen. (1997) Cytocompatibility of 38 composite monomers/additives in human oral primary cell cultures. J Dent Res; 76 (Spec Issue): p.382.
Google Scholar
[37]
Arenholt-Bindsley D., Ebbehöj, Hörsted-Bindslev. (1994) Cytotoxicity of conditioners and bonding agents. J Dent Res; 73 (Spec Issue): p.952.
Google Scholar
[38]
Schweikl H., Schmalz G., Göttke C. (1996) Mutagenic activity of various dentine bonding agents. Biomater; 17: pp.1451-1456.
DOI: 10.1016/0142-9612(96)87289-9
Google Scholar
[39]
Schweikl H., Schmalz G., Bey B. (1994) Mutagenicity of dentin bonding agents. J Biomed Mater Res ; 28: pp.1061-1067.
DOI: 10.1002/jbm.820280911
Google Scholar
[40]
Jontell M., Hanks CT., Bratel J., Bergenholtz G. (1995) Effects of unpolymerized resin components on the function of accessory cells derived from the rat incisor pulp. J Dent Res; 74: pp.1162-1167.
DOI: 10.1177/00220345950740050401
Google Scholar
[41]
Larsson KS. (1991) Potential teratogenic and carcinogenic effects of dental materials. Int Dent J; 41: pp.206-211.
Google Scholar
[42]
Stanislawski L, Daniau X, Lauti A, Goldberg M. Factors responsible for pulp cell cytotoxicity induced by resin-modified glass ionomer cements. J Biomed Mater Res. 1999; 48: 277–88.
DOI: 10.1002/(sici)1097-4636(1999)48:3<277::aid-jbm11>3.0.co;2-t
Google Scholar
[43]
Willershausen B, Schäfer D, Pistorius A, Schulze R, Mann W. Influence of resin-based restoration materials on cytotoxicity in gingival fibroblasts. Eur J Med Res. 1999; 4: 149–55.
Google Scholar
[44]
Lapp CA, Schuster GS. Effects of DMAEMA and 4-methoxyphenol on gingival fibroblast growth, metabolism, and response to interleukin-1. J Biomed Mater Res. 2002; 60: 30–5.
DOI: 10.1002/jbm.10057
Google Scholar
[45]
Caughman WF, Caughman GB, Dominy WT, Schuster GS. Glass ionomer and composite resin cements: Effects on oral cells. J Prosthet Dent. 1990; 63: 513–21.
DOI: 10.1016/0022-3913(90)90067-m
Google Scholar
[46]
Caughman WF, Caughman GB, Shiflett RA, Rueggeberg F, Schuster GS. Correlation of cytotoxicity, filler loading and curing time of dental composites. Biomaterials. 1991; 12: 737–40.
DOI: 10.1016/0142-9612(91)90022-3
Google Scholar
[47]
Göpferich A. Mechanisms of polymer degradation and erosion. Biomaterials. 1996; 17: 103–14.
Google Scholar
[48]
Durner J, Spahl W, Zaspel J, Schweikl H, Hickel R, Reichl FX. Eluted substances from unpolymerized and polymerized dental restorative materials and their Nernst partition coefficient. Dent Mater. 2010; 26: 91–9.
DOI: 10.1016/j.dental.2009.08.014
Google Scholar
[49]
Floyd CJ, Dickens SH. Network structure of Bis-GMA- and UDMA-based resin systems. Dent Mater. 2006; 22: 1143–9.
DOI: 10.1016/j.dental.2005.10.009
Google Scholar
[50]
Tanaka K, Taira M, Shintani H, Wakasa K, Yamaki M. Residual monomers (TEG – DMA and BIS - GMA) of a set visible light cured resin composite when immersed in water. J oral Rehabil. 1991; 18: 353–62.
DOI: 10.1111/j.1365-2842.1991.tb00067.x
Google Scholar
[51]
Spahl W, Budzikiewicz H, Geurtsen W. Determination of leachable components from four commercial dental composites by gas and liquid chromatography/mass spectrometry. J Dent. 1998; 26: 137–45.
DOI: 10.1016/s0300-5712(96)00086-3
Google Scholar
[52]
Geurtsen W. Substances released from dental resin composite and glass ionomer cements. Eur J Oral Sci. 1998; 106: 687–95.
DOI: 10.1046/j.0909-8836.1998.eos10602ii04.x
Google Scholar
[53]
Ohsaki A, Imai Y. Analysis of major components contained in Bis- GMA monomer. Dent Mater. 1999; 18: 425–9.
DOI: 10.4012/dmj.18.425
Google Scholar
[54]
Soderholm KJ, Zigan M, Ragan M, Fischlschweiger W, Bergman M. Hydrolytic degradation of dental composites. J Dent Res. 1984; 63: 1248–54.
DOI: 10.1177/00220345840630101701
Google Scholar
[55]
Oysaed H, Ruyter IE. Water sorption and filler characteristics of composites for use in posterior teeth. J Dent Res. 1986; 65: 1315–8.
DOI: 10.1177/00220345860650110601
Google Scholar
[56]
Oysaed H, Ryter IE. Release of formaldehyde from dental composite. J Dent Res. 1998; 67: 1289–94.
Google Scholar
[57]
Lind PO. Oral lichenoid reactions related to composite restorations. preliminary report. Acta Odontol Scand. 1988; 64: 63–5.
DOI: 10.3109/00016358809004748
Google Scholar
[58]
Yamamoto K, Noda H, Kimura K. Adherence of oral streptococci to composite resin restorative materials. J Dent. 1989; 17: 225–9.
DOI: 10.1016/0300-5712(89)90170-x
Google Scholar
[59]
Seppä L, Torppa-Saarinen E, Luoma H. Effect of different glass ionomers on the acid production and electrolyte metabolism of Streptococcus mutans Ingbritt. Caries Res. 1992; 26: 434–8.
DOI: 10.1159/000261483
Google Scholar
[60]
Harkes G, Feijen J, Dankert J. Adhesion of Escherichia coli on to a series of poly (methacrylates) differing in charge and hydrophobicity. Biomaterials. 1991; 12: 853–60.
DOI: 10.1016/0142-9612(91)90074-k
Google Scholar
[61]
Santerre JP, Shajii L, Leung BW. Relation of dental composite formulations to their degradation and the release of hydrolyzed polymeric –resin- drived products. Crit Rev Oral Biol Med. 2001; 12: 136–51.
DOI: 10.1177/10454411010120020401
Google Scholar
[62]
Jancar J, Wang W, DiBenedetto AT. On the heterogeneous structure of thermally cured bis-GMA/TEGDMA resins. J Mater Sci Mater Med. 2000; 11: 675–82.
Google Scholar
[63]
Söderholm KJ, Yang MC, Garcea I. Filler particle leachability of experimental dental composites. Eur J Oral Sci. 2000; 108: 555–60.
DOI: 10.1034/j.1600-0722.2000.00919.x
Google Scholar
[64]
Soderholm KJ, Mukherjee R, Longmate J. Filler leachability of composite restored in distilled water or artificial saliva. J Dent Res. 1996; 75: 1692–9.
DOI: 10.1177/00220345960750091201
Google Scholar
[65]
Soderholm KJ. Filler leachability during water storage of six composite materials. Scand J Dent Res. 1990; 98: 82–8.
Google Scholar
[66]
Guestsen W. Biocompatibility of resin modified filling materials. Crit Rev Oral Biol Med. 2000; 11: 333–55.
Google Scholar
[67]
Fleisch AF, Sheffield PE, Chinn C, Edelstein BL, Landrigan PJ. Bisphenol A and related compounds in dental materials. Pediatrics. 2010; 126: 760–8.
DOI: 10.1542/peds.2009-2693
Google Scholar
[68]
Schafer TE, Lapp CA, Hanes CM, Lewis JB, Wataha JC, Schuster GS. Estrogenicity of bisphenol A and bisphenol A dimethacrylate in vitro. J Biomed Mater Res. 1999; 45: 192–7.
DOI: 10.1002/(sici)1097-4636(19990605)45:3<192::aid-jbm5>3.0.co;2-a
Google Scholar
[69]
Pulgar R, Olea-Serrano MF, Novillo-Fertrell A, Rivas A, Pazos P, Pedraza V, et al. Determination of bisphenol A and related aromatic compounds released from Bis- GMA based composites and sealants by high performance liquid chromatography. Environ Health Perspect. 2000; 108: 21–7.
DOI: 10.1289/ehp.0010821
Google Scholar
[70]
Lewis JB, Rueggeberg FA, Lapp CA, Ergle JW, Schuster GS. Identification and characterization of estrogen-like components in commercial resin-based dental restorative materials. Clin Oral Investig. 1999; 3: 107–13.
DOI: 10.1007/s007840050087
Google Scholar
[71]
Tai KW, Huang FM, Huang MS, Chang YC. Assessment of genotoxicity of resin and zink oxide eugenol basedroot canal sealers using in vitro mammalian test system. J Biomed Mater Res. 2002; 50: 73–7.
DOI: 10.1002/jbm.1218
Google Scholar
[72]
Rubin BS, Murrey MK, Damassa DA, King JC, Soto AM. Perinatal exposure to low dose of bisphenol A affects body weight, patterns of sterous cyclicity, and plasma LH level. Environ Health perspect. 2001; 109: 675–80.
DOI: 10.1289/ehp.01109675
Google Scholar
[73]
Nthanson D, Lertpitayakun P, Lamkin MS, Edalatpour M, Chou LL. In vitro elution of leachable components from dental sealants. J Am Dent Assoc. 1997; 128: 1517–23.
DOI: 10.14219/jada.archive.1997.0091
Google Scholar
[74]
Imai Y. Comments on Determination of bisphenol A and related aromatic compounds released from bis-GMA-based composites and sealants by high performance liquid chromatography, iron Health Perspect. 2000; 108: A545–6.
DOI: 10.1289/ehp.108-a545
Google Scholar
[75]
Soderholm KY, Mariotti A. Bis GMA –based resins in dentistry. Are they safe? J Am Dent Assoc. 1999; 130: 201–20.
Google Scholar
[76]
Hamid A, Hume WR. A study of component release from resin pit and fissure sealants in vitro. Dent Mater. 1997; 13: 98–102.
DOI: 10.1016/s0109-5641(97)80018-8
Google Scholar
[77]
Cox CF, Hafez AA, Akimoto N, Otsuki M, Suzuki S, Tarim B. Biocompatibility of primer, adhesive and resin composite systems on non-exposed and exposed pulps of non-human primate teeth. Am J Dent. 1998; 11: S55–63. Spec No.
Google Scholar
[78]
Akimoto N, Momoi Y, Kohno A, Suzuki S, Otsuki M, Suzuki S, et al. Biocompatibility of Clearfil Liner Bond 2 and Clearfil AP-X system on nonexposed and exposed primate teeth. Quintessence Int. 1998; 29: 177–88.
Google Scholar