Toxicity of Dental Amalgams vs Composite Resins

Article Preview

Abstract:

Ideal qualities of dental materials should include, in terms of biocompatibility, passivity towards oral tissues, so the material should not contain any leachable toxic and diffusible substances, neither release any harmful substance that can cause in time side effects, locally or generally. Even if amalgams are a group of dental materials with a long recorded history, many practitioners blame them, in contradiction with composite resins, especially for releasing free mercury into the body. On the other side, composite resins have reached great biocompatibility specifications, but also have many qualities that need more research, especially long term type.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

83-90

Citation:

Online since:

May 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Tig I.A. (2010), Amalgamele dentare – trecut, prezent si viitor. Editura Universităţii din Oradea, ISBN 978-606-10-0109-5, Oradea: 5.

Google Scholar

[2] Roulet JF. Benefits and disadvantages of tooth-coloured alternatives to amalgam. Journal of Dentistry. 1997; 25(6): 459–473.

DOI: 10.1016/s0300-5712(96)00066-8

Google Scholar

[3] Lorscheider FL, Vimy MJ, Summers AO. Mercury exposure from silver, tooth firings: emerging evidence questions a traditional dental paradigm. The FASEB Journal. 1995; 9(7): 504–508.

DOI: 10.1096/fasebj.9.7.7737458

Google Scholar

[4] Guzzi G, Grandi M, Cattaneo C, et al. Dental amalgam and mercury levels in autopsy tissues: food for thought. The American Journal of Forensic Medicine and Pathology. 2006; 27(1): 42–45.

DOI: 10.1097/01.paf.0000201177.62921.c8

Google Scholar

[5] Sarkar NK, Park JR. Mechanism of improved corrosion resistance of Zn-containing dental amalgams. Journal of Dental Research. 1988; 67(10): 1312–1315.

DOI: 10.1177/00220345880670101301

Google Scholar

[6] Patterson JE, Weissberg BG, Dennison PJ. Mercury in human breath from dental amalgams. Bulletin of Environmental Contamination and Toxicology. 1985; 34(4): 459–468.

DOI: 10.1007/bf01609761

Google Scholar

[7] Vimy MJ, Lorscheider FL. Serial measurements of intra-oral air mercury: estimation of daily dose from dental amalgam. Journal of Dental Research. 1985; 64(8): 1072–1075.

DOI: 10.1177/00220345850640081001

Google Scholar

[8] Vimy MJ, Lorscheider FL. Intra-oral air mercury released from dental amalgam. Journal of Dental Research. 1985; 64(8): 1069–1071.

DOI: 10.1177/00220345850640080901

Google Scholar

[9] Department of Health and Human Services Public Health Service. Dental amalgam: a scientific review and recommended Public Health Service strategy for research, education and regulation: final report of the subcommittee on risk management of the Committee to Coordinate Environmental Health and Related Programs. 1993, http: /web. health. gov/environment/amalgam1/ct. htm.

DOI: 10.1096/j.1530-6860.1993.tb93357.x

Google Scholar

[10] Eyeson J, House I, Yang YH, Warnakulasuriya KA. Relationship between mercury levels in blood and urine and complaints of chronic mercury toxicity from amalgam restorations. British Dental Journal. 2010; 208, article E7 discussion 162–163.

DOI: 10.1038/sj.bdj.2010.181

Google Scholar

[11] Craig RG, Powers JM. Restorative Dental Materials. 11th edition. St Louis, Mo, USA: Mosby; (2002).

Google Scholar

[12] Berdouses E., Vaidyanathan TK., Dastane A., et al. (1995) Mercury release from dental amalgams: an in vitro study under controlled chewing and brushing in an artificial mouth. J Dent Res; 74: pp.1185-1193.

DOI: 10.1177/00220345950740050701

Google Scholar

[13] Halbach S. Amalgam tooth fillings and man's mercury burden. (1994) Hum Exp Toxicol; 13: pp.496-501.

DOI: 10.1177/096032719401300708

Google Scholar

[14] Halbach S. Estimation of mercury dose by a novel quantitation of elemental and inorganic species released from amalgam. (1995) Int Arch Occup Environ Health; 67: pp.295-300.

DOI: 10.1007/bf00385643

Google Scholar

[15] Sandborgh-Englund G., Nygren AT., Ekstrand J., Elinder C-G. (1996) No evidence of renal toxicity from amalgam fillings. Am J Physiol, 271: pp.941-945.

DOI: 10.1152/ajpregu.1996.271.4.r941

Google Scholar

[16] Herrstrom P., Schutz A., Raihle G., Holthuis N. (1995) nDental amalgam, low-dose exporsure to mercury and urinary proteins in young swedish men. Arch Environ Health; 50: pp.103-107.

DOI: 10.1080/00039896.1995.9940886

Google Scholar

[17] Naleway C., Chou H-N., Muller T., et al. (1991) On-site screening for urinary Hg concentrations and correlation with glomerular and renal tubular function. J Pub Health Dent; 51: pp.12-17.

DOI: 10.1111/j.1752-7325.1991.tb02169.x

Google Scholar

[18] Factor-Litvak P., Hasselgren G., Jacobs D., Begg M., Kline J., Geier J., Mervish N., Schoenholtz S., and Graziano J. (2003).

DOI: 10.1289/ehp.5879

Google Scholar

[19] Saxe SR., Wekstein MW., Kryscio RJ., et al. (1999) Alzheimer's disease, dental amalgam and mercury. JADA; 130: pp.191-199.

DOI: 10.14219/jada.archive.1999.0168

Google Scholar

[20] McGrother CW., Dugmore C., Phillips MJ., et al. (1999) Multiple sclerosis, dental caries and fillings: a case-control study. Br Dent J; 187: pp.261-264.

DOI: 10.1038/sj.bdj.4800255a

Google Scholar

[21] The NMSS Compendium: Heavy Metals (Toxicology) (2000). Available from http: /www. nmss. org/compendium/compend70. html.

Google Scholar

[22] Mackert JR., Leffel MS., Wagner DA., Powell BJ. (1991) Lymphocyte levels in subjects with and without amalgam restorations. JADA; 122(3): pp.49-53.

DOI: 10.14219/jada.archive.1991.0095

Google Scholar

[23] Loftenius A., Sandborgh-Englund G., Ekstrand J. (1998) Acute exposure to mercury from amalgam: no short-time effect on the peripheral blood lymphocytes in healthy individuals. J Toxicol Environ Health; 54: pp.547-560.

DOI: 10.1080/009841098158692

Google Scholar

[24] Jones DW. Exposure or absorption and the crucial question of limits for mercury. Journal of the Canadian Dental Association. 1999; 65(1): 788–792.

Google Scholar

[25] Jones DW. Putting dental mercury pollution into perspective. British Dental Journal. 2004; 197(4): 175–177.

DOI: 10.1038/sj.bdj.4811564

Google Scholar

[26] Jones DW. Has dental amalgam been torpedoed and sunk? Journal of Dental Research. 2008; 87(2): 101–102.

DOI: 10.1177/154405910808700203

Google Scholar

[27] Okabe T, Butts MB, Mitchell RJ. Changes in the microstructures of silver-tin and admixed high-copper amalgams during creep. Journal of Dental Research. 1983; 62(1): 37–43.

DOI: 10.1177/00220345830620010901

Google Scholar

[28] Jones DW. A Scandinavian tragedy. British Dental Journal. 2008; 204(5): 233–234.

Google Scholar

[29] Timothy A. DeRouen, Michael D. Martin, Brian G. Leroux, Brenda D. Townes, James S. Woods, Jorge Leitão, Alexandre Castro-Caldas, Henrique Luis, Mario Bernardo, Gail Rosenbaum, Isabel P. Martins (2006).

DOI: 10.1001/jama.295.15.1784

Google Scholar

[30] U.S. Food and Drug Administration Center for Devices and Radiological Health. (2003) Consumer update: dental amalgams. Available from: www. fda. gov/cdrh/consumer/amalgams. html.

Google Scholar

[31] United States Food and Drug Administration. Regulation of dental amalgams. 2002, http: /www. fda. gov/NewsEvents/Testimony/ucm115161. htm.

Google Scholar

[32] U.S. Department of Health and Human Services Working Group on Dental Amalgam, Dental amalgam and alternative restorative materials an update report to the Environmental Health Policy Committee, 1997, http: /web. health. gov/environment/amalgam2/Contents. html.

Google Scholar

[33] Craig RG. Chap 9. 11th ed. United States: Mosby Inc; 2002. Restorative dental materials.

Google Scholar

[34] Stein PS, Sullivan J, Haubenreich JE, Osborne PB. Composite resin in medicine and dentistry. J Long Term Eff Med Implants. 2005; 15: 641–54. [PubMed].

DOI: 10.1615/jlongtermeffmedimplants.v15.i6.70

Google Scholar

[35] Lygre H., Hol PJ., Solhiem E., Moe G. (1999) Organic leachables from polymerbased dental filling materials. Eur J Oral Sci; 107: pp.378-83.

DOI: 10.1046/j.0909-8836.1999.eos107509.x

Google Scholar

[36] Leyhausen G., Lehmann F., Geurtsen. (1997) Cytocompatibility of 38 composite monomers/additives in human oral primary cell cultures. J Dent Res; 76 (Spec Issue): p.382.

Google Scholar

[37] Arenholt-Bindsley D., Ebbehöj, Hörsted-Bindslev. (1994) Cytotoxicity of conditioners and bonding agents. J Dent Res; 73 (Spec Issue): p.952.

Google Scholar

[38] Schweikl H., Schmalz G., Göttke C. (1996) Mutagenic activity of various dentine bonding agents. Biomater; 17: pp.1451-1456.

DOI: 10.1016/0142-9612(96)87289-9

Google Scholar

[39] Schweikl H., Schmalz G., Bey B. (1994) Mutagenicity of dentin bonding agents. J Biomed Mater Res ; 28: pp.1061-1067.

DOI: 10.1002/jbm.820280911

Google Scholar

[40] Jontell M., Hanks CT., Bratel J., Bergenholtz G. (1995) Effects of unpolymerized resin components on the function of accessory cells derived from the rat incisor pulp. J Dent Res; 74: pp.1162-1167.

DOI: 10.1177/00220345950740050401

Google Scholar

[41] Larsson KS. (1991) Potential teratogenic and carcinogenic effects of dental materials. Int Dent J; 41: pp.206-211.

Google Scholar

[42] Stanislawski L, Daniau X, Lauti A, Goldberg M. Factors responsible for pulp cell cytotoxicity induced by resin-modified glass ionomer cements. J Biomed Mater Res. 1999; 48: 277–88.

DOI: 10.1002/(sici)1097-4636(1999)48:3<277::aid-jbm11>3.0.co;2-t

Google Scholar

[43] Willershausen B, Schäfer D, Pistorius A, Schulze R, Mann W. Influence of resin-based restoration materials on cytotoxicity in gingival fibroblasts. Eur J Med Res. 1999; 4: 149–55.

Google Scholar

[44] Lapp CA, Schuster GS. Effects of DMAEMA and 4-methoxyphenol on gingival fibroblast growth, metabolism, and response to interleukin-1. J Biomed Mater Res. 2002; 60: 30–5.

DOI: 10.1002/jbm.10057

Google Scholar

[45] Caughman WF, Caughman GB, Dominy WT, Schuster GS. Glass ionomer and composite resin cements: Effects on oral cells. J Prosthet Dent. 1990; 63: 513–21.

DOI: 10.1016/0022-3913(90)90067-m

Google Scholar

[46] Caughman WF, Caughman GB, Shiflett RA, Rueggeberg F, Schuster GS. Correlation of cytotoxicity, filler loading and curing time of dental composites. Biomaterials. 1991; 12: 737–40.

DOI: 10.1016/0142-9612(91)90022-3

Google Scholar

[47] Göpferich A. Mechanisms of polymer degradation and erosion. Biomaterials. 1996; 17: 103–14.

Google Scholar

[48] Durner J, Spahl W, Zaspel J, Schweikl H, Hickel R, Reichl FX. Eluted substances from unpolymerized and polymerized dental restorative materials and their Nernst partition coefficient. Dent Mater. 2010; 26: 91–9.

DOI: 10.1016/j.dental.2009.08.014

Google Scholar

[49] Floyd CJ, Dickens SH. Network structure of Bis-GMA- and UDMA-based resin systems. Dent Mater. 2006; 22: 1143–9.

DOI: 10.1016/j.dental.2005.10.009

Google Scholar

[50] Tanaka K, Taira M, Shintani H, Wakasa K, Yamaki M. Residual monomers (TEG – DMA and BIS - GMA) of a set visible light cured resin composite when immersed in water. J oral Rehabil. 1991; 18: 353–62.

DOI: 10.1111/j.1365-2842.1991.tb00067.x

Google Scholar

[51] Spahl W, Budzikiewicz H, Geurtsen W. Determination of leachable components from four commercial dental composites by gas and liquid chromatography/mass spectrometry. J Dent. 1998; 26: 137–45.

DOI: 10.1016/s0300-5712(96)00086-3

Google Scholar

[52] Geurtsen W. Substances released from dental resin composite and glass ionomer cements. Eur J Oral Sci. 1998; 106: 687–95.

DOI: 10.1046/j.0909-8836.1998.eos10602ii04.x

Google Scholar

[53] Ohsaki A, Imai Y. Analysis of major components contained in Bis- GMA monomer. Dent Mater. 1999; 18: 425–9.

DOI: 10.4012/dmj.18.425

Google Scholar

[54] Soderholm KJ, Zigan M, Ragan M, Fischlschweiger W, Bergman M. Hydrolytic degradation of dental composites. J Dent Res. 1984; 63: 1248–54.

DOI: 10.1177/00220345840630101701

Google Scholar

[55] Oysaed H, Ruyter IE. Water sorption and filler characteristics of composites for use in posterior teeth. J Dent Res. 1986; 65: 1315–8.

DOI: 10.1177/00220345860650110601

Google Scholar

[56] Oysaed H, Ryter IE. Release of formaldehyde from dental composite. J Dent Res. 1998; 67: 1289–94.

Google Scholar

[57] Lind PO. Oral lichenoid reactions related to composite restorations. preliminary report. Acta Odontol Scand. 1988; 64: 63–5.

DOI: 10.3109/00016358809004748

Google Scholar

[58] Yamamoto K, Noda H, Kimura K. Adherence of oral streptococci to composite resin restorative materials. J Dent. 1989; 17: 225–9.

DOI: 10.1016/0300-5712(89)90170-x

Google Scholar

[59] Seppä L, Torppa-Saarinen E, Luoma H. Effect of different glass ionomers on the acid production and electrolyte metabolism of Streptococcus mutans Ingbritt. Caries Res. 1992; 26: 434–8.

DOI: 10.1159/000261483

Google Scholar

[60] Harkes G, Feijen J, Dankert J. Adhesion of Escherichia coli on to a series of poly (methacrylates) differing in charge and hydrophobicity. Biomaterials. 1991; 12: 853–60.

DOI: 10.1016/0142-9612(91)90074-k

Google Scholar

[61] Santerre JP, Shajii L, Leung BW. Relation of dental composite formulations to their degradation and the release of hydrolyzed polymeric –resin- drived products. Crit Rev Oral Biol Med. 2001; 12: 136–51.

DOI: 10.1177/10454411010120020401

Google Scholar

[62] Jancar J, Wang W, DiBenedetto AT. On the heterogeneous structure of thermally cured bis-GMA/TEGDMA resins. J Mater Sci Mater Med. 2000; 11: 675–82.

Google Scholar

[63] Söderholm KJ, Yang MC, Garcea I. Filler particle leachability of experimental dental composites. Eur J Oral Sci. 2000; 108: 555–60.

DOI: 10.1034/j.1600-0722.2000.00919.x

Google Scholar

[64] Soderholm KJ, Mukherjee R, Longmate J. Filler leachability of composite restored in distilled water or artificial saliva. J Dent Res. 1996; 75: 1692–9.

DOI: 10.1177/00220345960750091201

Google Scholar

[65] Soderholm KJ. Filler leachability during water storage of six composite materials. Scand J Dent Res. 1990; 98: 82–8.

Google Scholar

[66] Guestsen W. Biocompatibility of resin modified filling materials. Crit Rev Oral Biol Med. 2000; 11: 333–55.

Google Scholar

[67] Fleisch AF, Sheffield PE, Chinn C, Edelstein BL, Landrigan PJ. Bisphenol A and related compounds in dental materials. Pediatrics. 2010; 126: 760–8.

DOI: 10.1542/peds.2009-2693

Google Scholar

[68] Schafer TE, Lapp CA, Hanes CM, Lewis JB, Wataha JC, Schuster GS. Estrogenicity of bisphenol A and bisphenol A dimethacrylate in vitro. J Biomed Mater Res. 1999; 45: 192–7.

DOI: 10.1002/(sici)1097-4636(19990605)45:3<192::aid-jbm5>3.0.co;2-a

Google Scholar

[69] Pulgar R, Olea-Serrano MF, Novillo-Fertrell A, Rivas A, Pazos P, Pedraza V, et al. Determination of bisphenol A and related aromatic compounds released from Bis- GMA based composites and sealants by high performance liquid chromatography. Environ Health Perspect. 2000; 108: 21–7.

DOI: 10.1289/ehp.0010821

Google Scholar

[70] Lewis JB, Rueggeberg FA, Lapp CA, Ergle JW, Schuster GS. Identification and characterization of estrogen-like components in commercial resin-based dental restorative materials. Clin Oral Investig. 1999; 3: 107–13.

DOI: 10.1007/s007840050087

Google Scholar

[71] Tai KW, Huang FM, Huang MS, Chang YC. Assessment of genotoxicity of resin and zink oxide eugenol basedroot canal sealers using in vitro mammalian test system. J Biomed Mater Res. 2002; 50: 73–7.

DOI: 10.1002/jbm.1218

Google Scholar

[72] Rubin BS, Murrey MK, Damassa DA, King JC, Soto AM. Perinatal exposure to low dose of bisphenol A affects body weight, patterns of sterous cyclicity, and plasma LH level. Environ Health perspect. 2001; 109: 675–80.

DOI: 10.1289/ehp.01109675

Google Scholar

[73] Nthanson D, Lertpitayakun P, Lamkin MS, Edalatpour M, Chou LL. In vitro elution of leachable components from dental sealants. J Am Dent Assoc. 1997; 128: 1517–23.

DOI: 10.14219/jada.archive.1997.0091

Google Scholar

[74] Imai Y. Comments on Determination of bisphenol A and related aromatic compounds released from bis-GMA-based composites and sealants by high performance liquid chromatography, iron Health Perspect. 2000; 108: A545–6.

DOI: 10.1289/ehp.108-a545

Google Scholar

[75] Soderholm KY, Mariotti A. Bis GMA –based resins in dentistry. Are they safe? J Am Dent Assoc. 1999; 130: 201–20.

Google Scholar

[76] Hamid A, Hume WR. A study of component release from resin pit and fissure sealants in vitro. Dent Mater. 1997; 13: 98–102.

DOI: 10.1016/s0109-5641(97)80018-8

Google Scholar

[77] Cox CF, Hafez AA, Akimoto N, Otsuki M, Suzuki S, Tarim B. Biocompatibility of primer, adhesive and resin composite systems on non-exposed and exposed pulps of non-human primate teeth. Am J Dent. 1998; 11: S55–63. Spec No.

Google Scholar

[78] Akimoto N, Momoi Y, Kohno A, Suzuki S, Otsuki M, Suzuki S, et al. Biocompatibility of Clearfil Liner Bond 2 and Clearfil AP-X system on nonexposed and exposed primate teeth. Quintessence Int. 1998; 29: 177–88.

Google Scholar