Phase Evolution and Surface Morphology of Niobate Hydrate Template Nanoparticles Synthesized by Hydrothermal Method

Article Preview

Abstract:

In this work, an alternative approach to synthesize (K,Na)NbO3 (KNN) particles is investigated. KNN hydrate particles were prepared by hydrothermal method in a mixed alkaline solution with different KOH/(KOH+NaOH) ratios , and phase structure as well as surface morphology of these niobate hydrate particles were systematically studied. For the reaction rate of Na+ is faster than K+, a mixed alkaline solution with K+/Na+ changing from 4/1 to 5/1was required as a starting solution so a to obtain KNN hydrate particles with K/Na=1. Besides, the results show that particle size of KNN hydrate particles synthesized in different starting solution is dependent on K+/Na+ of the starting solution, and grain size of as-sintered KNN ceramics through hydrothermal method decreases sharply.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

105-108

Citation:

Online since:

July 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B. Jaffe, R. S. Roth, S. Marzullo, J. Res. Nat. Bur. Stand. 55 (1955) 239-254.

Google Scholar

[2] T. R. Shrout, S. J. Zhang, J. Electroceram. 19 (2007) 113-126.

Google Scholar

[3] J. Wu, D. Xiao, J. Zhu, Chem. Rev. 115(2015) 2559-2595.

Google Scholar

[4] T. Rojac, M. Kosec, B. Malic, J. Holc, Sci. Sinter. 37 (2005) 61-67.

DOI: 10.2298/sos0501061r

Google Scholar

[5] J. F. Li, K. Wang, B. P. Zhang, L. M. Zhang, J. Am. Ceram. Soc. 89 (2006) 706-709.

Google Scholar

[6] S. J. Zhang, R. Xia, T. R. Shrout, G. Z. Zang, J. F. Wang, J. Appl. Phys. 100 (2006) 10418.

Google Scholar

[7] X. J. Cheng, J. G. Wu, X. P. Wang, et al., J. Appl. Phys. 114 (2013) 124107.

Google Scholar

[8] J. G. Wu, D. Q. Xiao, Y. Y. Wang, et al., J. Appl. Phys. 102 (2007) 114113.

Google Scholar

[9] S. J. Zhang, R. Xia, T. R. Shrout, Appl. Phys. Lett. 91(2007) 132913.

Google Scholar

[10] F. Rubio-Marcos, A. Del Campo, J. F. Fernandez, J. Appl. Phys. 113 (2013)187215.

Google Scholar

[11] W. F. Liang, W. J. Wu, D. Q. Xiao, J. G. Zhu, J. Am. Ceram. Soc. 94 (2011) 4317-4322.

Google Scholar

[12] X. J. Cheng, J. G. Wu, X. P. Wang, et al., Appl. Phys. Lett. 103 (2013) 052906.

Google Scholar

[13] Y. F. Chang, S. Poterala, Z. P. Yang, G. L. Messing, J. Am. Ceram. Soc., 94 (2011)2494-2498.

Google Scholar

[14] E. Mensur-Alkoy, A. Berksoy-Yavuz, S. Alkoy, J. Am. Ceram. Soc. 97 (2014) 3425-3433.

DOI: 10.1111/jace.13139

Google Scholar

[15] A. B. Haugen, G. H. Olsen, F. Madaro, et al., J. Am. Ceram. Soc. 97 (2014), 3818-3825.

Google Scholar

[16] W. F. Liang, W. J. Wu, D. Q. Xiao, J. G. Zhu, J. Am. Ceram. Soc. 94 (2011) 4317-4322.

Google Scholar

[17] B. Y. Zhang, J. G. Wu, X. J. Cheng, et al. Acs. Appl. Mater. Inter. 5 (2013) 7718-7725.

Google Scholar

[18] J. G. Wu, Y. M. Wang, H. Wang, , Rsc. Adv. 4 (2014) 64835-64842.

Google Scholar

[19] Z. Wang, D. Q. Xiao, J. G. Wu, et al., J. Am. Ceram. Soc. 97 (2014) 688-690.

Google Scholar

[20] R. Z. Zuo, J. Fu, J. Am. Ceram. Soc. 94(2011)1467-1470.

Google Scholar

[21] M. K. Lo, S. Y. Lee, K. S. Chang, J. Phys. Chem. C 119(9) (2015)5218-5224.

Google Scholar

[22] G. H. Khorrami, A. Kompany, A. K. Zak, Advanced Powder Technology 26(1) (2015)113-118.

Google Scholar

[23] L. Q. Cheng, K. Wang, Q. Yu, J. F. Li, J. Mater. Chem. C 2(8) (2014)1519-1524.

Google Scholar