La-Doped Nanometer TiO2 Powders Prepared by Sol-Gel Method

Article Preview

Abstract:

La-doped Titania powders were synthesized by sol-gel method. The influence of dopant on the phase transformation temperature, Phase compositions, chemical states, microstructures and the visible light absorbable range of titania were investigated, which were characterized by X-ray diffractometer (XRD), transmission electron microscopy (TEM), energy dispersion X-ray spectrum in scanning transmission electronic microscope (STEM-EDS) and UV-Vis spectrophotometer (UV-Vis). The results show that the dopant of La3+ significantly inhibited the phase transition and grain growth of TiO2.With the increasing of calcination temperature, the grain orientation of TiO2 are from clutter into order and the light absorption band edge of TiO2 are blue shift. La3+-doped titania precipitate La4Ti19O24 and the second phase precipitated on the surface of TiO2 with irregular spherical.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

97-100

Citation:

Online since:

July 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] X.G. Han, Q. Kuang, M.S. Jin, et al., J. Am. Chem. Soc. 131 (2009) 3152–3153.

Google Scholar

[2] T.L. Thompson, J.T. Yates Jr., Chemical Reviews 106 (2006) 4428–4453.

Google Scholar

[3] R.C. Buchanan, P. Taeun. Materials Crytal Chemistry[M]. New York: Marcel Dekker Inc., (1997).

Google Scholar

[4] M. Femandez-Garicia, A. Martinez-Arias, J.C. Hanson, et al. Chemical Reviews, 2004, 104 (9): 4063-4104.

Google Scholar

[5] S. Mahanty, S. Roy, S. Sen, Journal of Crystal Growth 261 (2004) 77–81.

Google Scholar

[6] X.J. Li, Y.D. Qu, G.L. Sun, et al. Joumal of Physies and Chemistry of Solid, 2007, 68(12): 24-25.

Google Scholar

[7] B.T. Su, Z.Y. Ma, S.X. Min, et al. Materials Science and Engineering, 2007, 458(1-2): 44-47.

Google Scholar

[8] X.B. Chen, S.S. Mao, Chemical Reviews 107 (2007) 2891–2959.

Google Scholar

[9] I. Ken-ichi I., A. Fujishima, W. Toshiya, et al. Journal of Physical Chemistry B, 2000, 2(3): 207-210.

Google Scholar

[10] M. Takeuchi, M. Matsuoka, T. Hirao, et al. Catalysis Letters, 2000, 67(2-4): 135-137.

Google Scholar

[11] G.K. Zhang, X.M. Ding, F.S. He, et al., Langmuir 24(2008) 1026–1030.

Google Scholar

[12] R. Asahi, T. Morikawa, T. Ohwaki, et al. Science, 2001, 193(7): 269-271.

Google Scholar

[13] X. Z Bu, G.K. Zhang, Y.Y. Gao, Y.Q. Yang, Microporous and Mesoporous Materials 136 (2010) 132–137.

Google Scholar

[14] Mohammadi, D.J. Fray, A. Mohammadi. Microporous and Mesoporous Materials, 2008, 112 (7): 392-402.

Google Scholar

[15] H.Z. Zhang, J.F. Banfield, Chemistry of Materials 17 (2005) 3421–3425.

Google Scholar

[16] Y. Ohko, S. Saito, T. Tatsuma, et al. Journal of the Electrochemical Society, 2001, 148(1): B24-B28.

Google Scholar

[17] X.H. Xu, M. Wang, Y. Hou, et al. Crystal Research and Technology, 2002, 37(5): 431-439.

Google Scholar

[18] E. Manova, P. Aranda, M.A. Martín-Luengo, et al., Microporous and Mesoporous Materials 131 (2010) 252–260.

DOI: 10.1016/j.micromeso.2009.12.031

Google Scholar

[19] H. Zhang, J.F. Banfield. Chemistry of Materials, 2005, 17(13): 3421- 3425.

Google Scholar

[20] A.W. Xu, Y. Gao, H.Q. Liu. Journal of Catalysis, 2002, 207(2): 151-157.

Google Scholar