Hydrothermal Synthesis of Bi4Ti3O12/TiO2 Composite

Article Preview

Abstract:

A hydrothermal processing technology was employed to synthesize Bi4Ti3O12/TiO2 composite by using TiO2 and Bi(NO3)3 as reactor precursors, and KOH as mineralizer. The microstructure and composition of the as-synthesized samples were characterized by X-ray diffraction (XRD), scan electron microscopy (SEM), and the photocatalytic activity was studied. The results showed that Bi/Ti molar ratio, mass of the KOH and the hydrothermal parameters play important roles on the morphology and activities of the photocatalyst. We could obtain composites with good morphology and better performance with 200 °C hydrothermal treatment for 12 h, 0.01 mol/L of KOH, and 1:2 of mole ratio of Bi/Ti, as well as using good crystalline TiO2 as the raw material. The as-prepared powder has a diameter of about 800nm, and the decolorized rate of methylene blue could reach 95 % after the UV-irradiation for 5 h.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

109-112

Citation:

Online since:

July 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E. Evgenidou, K. Fytianos, I. Poulios, Semiconductor-sensitized photodegradation of dichlorvos in water using TiO2 and ZnO as catalysts, Appl. Catal. B: Environ. 59 (2005) 81-89.

DOI: 10.1016/j.apcatb.2005.01.005

Google Scholar

[2] J.S. Lee, K.H. You, C.B. Park. Highly photoactive, low band gap TiO2 nanoparticles wrapped by graphene, Adv. Mater. 24 (2012) 1084-1088.

DOI: 10.1002/adma.201104110

Google Scholar

[3] H. Choi, E. Stathatos, D.D. Dionysiou, Sol–gel preparation of mesoporous photocatalytic TiO2 films and TiO2/Al2O3 composite membranes for environmental applications, Appl. Catal. B: Environ. 63 (2006) 60-67.

DOI: 10.1016/j.apcatb.2005.09.012

Google Scholar

[4] J.S. Dalton, P.A. Janes, N.G. Jones, J.A. Nicholson, K.R. Hallam, G.C. Allen, Photocatalytic oxidation of NOx gases using TiO2: a surface spectroscopic approach, Environ. Pollut. 120 (2002) 415-422.

DOI: 10.1016/s0269-7491(02)00107-0

Google Scholar

[5] Y.Y. Yao, C.H. Song, P. Bao, D. Su, X.M. Lu, J.S. Zhu Y.N. Wang, Doping effect on the dielectric property in bismuth titanate, J. Appl. Phys. 95 (2004) 3126-3130.

DOI: 10.1063/1.1649456

Google Scholar

[6] Z.H. Zhao, J. Tian, D. Wang, X.L. Kang, Y.H. Sang, H, Liu, J.Y. Wang, S.W. Chen, R.I. Boughtond, H.D. Jiang, UV-visible-light-activated photocatalysts based on Bi2O3/Bi4Ti3O12/TiO2 double-heterostructured TiO2 nanobelts, J. Mater. Chem. 22 (2012).

DOI: 10.1039/c2jm34580c

Google Scholar

[7] K.H. Xue, L.R.C. Fonseca, Y. Nishi, First-principles study of A-site substitution in ferroelectric bismuth titanate, J. Mater. Sci. 49 (2014) 6363-6372.

DOI: 10.1007/s10853-014-8363-4

Google Scholar

[8] Y. Li, L.Y. Dang, L.F. Han, P.P. Li, J.S. Wang, Z.J. Li, Iodine-sensitized Bi4Ti3O12/TiO2 photocatalyst with enhanced photocatalytic activity on degradation of phenol, J. Mol. Catal. A: Chem. 379 (2013) 146-151.

DOI: 10.1016/j.molcata.2013.08.001

Google Scholar

[9] T. Cao, Y. Li, C.H. Wang, Z.Y. Zhang, M.Y. Zhang, C.L. Shao, Y.C. Liu, Bi4Ti3O12 nanosheets/TiO2 submicron fibers heterostructures: in situ fabrication and high visible light photocatalytic activity, J. Mater. Chem. 21 (2011) 6922-6927.

DOI: 10.1039/c1jm10343a

Google Scholar

[10] K.M.S. Khalil, A.A. Elsamahy, M.S. Elanany, Formation and characterization of high surface area thermally stabilized Titania/Silica composite materials via hydrolysis of titanium(IV) tetra-Isopropoxide in sols of spherical silica particles, J. Colloid Interface Sci. 249 (2002).

DOI: 10.1006/jcis.2002.8268

Google Scholar

[11] W. Wang, P. Serp, P. Kalck, L.F. Joaquim, Photocatalytic degradation of phenol on MWNT and titania composite catalysts prepared by a modified sol-gel method, Appl. Catal. B: Environ. 56 (2005) 305-312.

DOI: 10.1016/j.apcatb.2004.09.018

Google Scholar