BiFeO3 Powders Synthesized by Different Sol-Gel Methods

Article Preview

Abstract:

The multiferroic BiFeO3 powders with perovskite structure were synthesized by sol-gel auto-combustion and conventional sol-gel methods, respectively. As-prepared powders were characterized by XRD, SEM and VSM techniques to investigate phase structure, microstructure and magnetic properties. The results show that the pure phase BiFeO3 powders are obtained successfully by sol-gel auto-combustion after calcining at 650°C for 2h and leaching by HNO3. Compared with conventional sol-gel method which got pure phase BiFeO3 powders at 800°C for 3h, the sol-gel auto-combustion technique can get more pure powders at low temperature, short time and low cost. The particle sizes of the BiFeO3 powders are smaller and well distributed by the sol-gel auto-combustion method than that of the conventional sol-gel method. Furthermore, the magnetic properties at room temperature prepared by the sol-gel auto-combustion methods are significant higher than that of conventional sol-gel method.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

84-88

Citation:

Online since:

July 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N.A. Spaldin and M. Fiebig, The renaissance of magnetoelectric multiferroics, Sci. 309 (2005) 391-392.

DOI: 10.1126/science.1113357

Google Scholar

[2] W. Eerenstein, N.D. Mathur and J.F. Scott, Multiferroic and magnetoelectric materials, Nature 442 (2006) 759-765.

DOI: 10.1038/nature05023

Google Scholar

[3] S.W. Cheong, M. Mostovoy, Multiferroics a magnetic twist for ferroelectricity, Nat. Mater. 6 (2007) 13-20.

DOI: 10.1038/nmat1804

Google Scholar

[4] N.A. Hill, Why are there so few magnetic ferroelectrics, J. Phys. Chem. 104 (2000) 6694-6709.

DOI: 10.1021/jp000114x

Google Scholar

[5] J.F. Scott, Multiferroic memories, Nat. Mater. 6 (2007) 256-257.

Google Scholar

[6] C. Michel, M. Moreau, G.D. Achenbechi, R. Gerson, and W.J. James, The atomic structure of BiFeO3, Solid State Comm. 7 (1969) 701-704.

DOI: 10.1016/0038-1098(69)90597-3

Google Scholar

[7] G. Catalan and J.F. Scott, Physics and applications of bismuth ferrite, Adv. Mater. 21 (2009) 2463-2485.

DOI: 10.1002/adma.200802849

Google Scholar

[8] G.D. Achenbach and R. Gerson, Preparation of single-phase polycrystalline BiFeO3, J. Am. Ceram. Soc. (1967) 437.

Google Scholar

[9] M.M. Kumar, V.R. Palkar, K. Srinivas and S.V. Suryanarayana, Ferroelectricity in a pure BiFeO3 ceramic, Appl. Phys. Lett. 76 (2000) 2764.

DOI: 10.1063/1.126468

Google Scholar

[10] D. Kothari, V. R. Reddy, V. G. Sathe, A. Gupta, A. Banerjee and A. M. Awasthi, Raman scattering study of polycrystalline magnetoelectric BiFeO3, J. Magn. Magn. Mater. 320 (2008) 548-552.

DOI: 10.1016/j.jmmm.2007.07.016

Google Scholar

[11] J.K. Kim, S.S. Kim and W.J. Kim, Sol–gel synthesis and properties of multiferroic BiFeO3, Mater. Lett. 59 (2005) 4006-4009.

DOI: 10.1016/j.matlet.2005.07.050

Google Scholar

[12] F. Chen, Q. F. Zhang, J. H. Li, Y. J. Qi, C. J. Lu, X. B. Chen, X. M. Ren and Y. Zhao, Sol-gel derived multiferroic BiFeO3 ceramics with large polarization and weak ferromagnetism, Appl. Phys. Lett. 89 (2006) 3.

DOI: 10.1063/1.2345603

Google Scholar

[13] J.H. Xu, H. Ke, D.C. Jia, W. Wang and Y. Zhou, Low-temperature synthesis of BiFeO3 nanopowders via a sol–gel method, J. Alloy. Compd. 472 (2009) 473-477.

DOI: 10.1016/j.jallcom.2008.04.090

Google Scholar

[14] L.C. Wang, Z.H. Wang, S.L. He, X. Li, P.T. Lin, J.R. Sun and B.G. Shen, Enhanced magnetization and suppressed current leakage in BiFeO3 ceramics prepared by spark plasma sintering of sol–gel derived nanoparticles, Physica B. 407 (2012) 1196-1202.

DOI: 10.1016/j.physb.2011.12.136

Google Scholar

[15] X.W. Qi, H.J. Xu, X.Y. Zhang and J.Q. Qi, Synthesis of multiferroic BiFeO3 powders by sol-gel auto-combustion, Adv. Mater. Res. 412 (2011) 99-102.

DOI: 10.4028/www.scientific.net/amr.412.99

Google Scholar

[16] S. Godara, N. Sinha, G. Ray and B. Kumar, Combined structural, electrical, magnetic and optical characterization of bismuth ferrite nanoparticles synthesized by auto-combustion route, J. As. Ceram. Soc. 2 (2014) 416-421.

DOI: 10.1016/j.jascer.2014.09.001

Google Scholar

[17] A. Jaiswal, R. Das, K. Vivekanand, P.M. Abraham, S. Adyanthaya, and P. Poddar, Effect of reduced particle size on the magnetic properties of chemically synthesized BiFeO3 nanocrystals, J. Phys. Chem. 114 (2010) 2108-2115.

DOI: 10.1021/jp910745g

Google Scholar

[18] Y.P. Wang, L. Zhou, M.F. Zhang, X.Y. Chen, J.M. Liu and Z.G. Liu, Room-temperature saturated ferroelectric polarization in BiFeO3 ceramics synthesized by rapid liquid phase sintering, Appl. Phys. Lett. 84 (2004) 1731.

DOI: 10.1063/1.1667612

Google Scholar

[19] H. Ke, W. Wang, Y. Wang, J. Xu, D. Jia, Z. Lu and Y. Zhou, Factors controlling pure-phase multiferroic BiFeO3 powders synthesized by chemical co-precipitation, J. Alloy. Compd. 509 (2011) 2192-2197.

DOI: 10.1016/j.jallcom.2010.09.213

Google Scholar