[1]
N.A. Spaldin and M. Fiebig, The renaissance of magnetoelectric multiferroics, Sci. 309 (2005) 391-392.
DOI: 10.1126/science.1113357
Google Scholar
[2]
W. Eerenstein, N.D. Mathur and J.F. Scott, Multiferroic and magnetoelectric materials, Nature 442 (2006) 759-765.
DOI: 10.1038/nature05023
Google Scholar
[3]
S.W. Cheong, M. Mostovoy, Multiferroics a magnetic twist for ferroelectricity, Nat. Mater. 6 (2007) 13-20.
DOI: 10.1038/nmat1804
Google Scholar
[4]
N.A. Hill, Why are there so few magnetic ferroelectrics, J. Phys. Chem. 104 (2000) 6694-6709.
DOI: 10.1021/jp000114x
Google Scholar
[5]
J.F. Scott, Multiferroic memories, Nat. Mater. 6 (2007) 256-257.
Google Scholar
[6]
C. Michel, M. Moreau, G.D. Achenbechi, R. Gerson, and W.J. James, The atomic structure of BiFeO3, Solid State Comm. 7 (1969) 701-704.
DOI: 10.1016/0038-1098(69)90597-3
Google Scholar
[7]
G. Catalan and J.F. Scott, Physics and applications of bismuth ferrite, Adv. Mater. 21 (2009) 2463-2485.
DOI: 10.1002/adma.200802849
Google Scholar
[8]
G.D. Achenbach and R. Gerson, Preparation of single-phase polycrystalline BiFeO3, J. Am. Ceram. Soc. (1967) 437.
Google Scholar
[9]
M.M. Kumar, V.R. Palkar, K. Srinivas and S.V. Suryanarayana, Ferroelectricity in a pure BiFeO3 ceramic, Appl. Phys. Lett. 76 (2000) 2764.
DOI: 10.1063/1.126468
Google Scholar
[10]
D. Kothari, V. R. Reddy, V. G. Sathe, A. Gupta, A. Banerjee and A. M. Awasthi, Raman scattering study of polycrystalline magnetoelectric BiFeO3, J. Magn. Magn. Mater. 320 (2008) 548-552.
DOI: 10.1016/j.jmmm.2007.07.016
Google Scholar
[11]
J.K. Kim, S.S. Kim and W.J. Kim, Sol–gel synthesis and properties of multiferroic BiFeO3, Mater. Lett. 59 (2005) 4006-4009.
DOI: 10.1016/j.matlet.2005.07.050
Google Scholar
[12]
F. Chen, Q. F. Zhang, J. H. Li, Y. J. Qi, C. J. Lu, X. B. Chen, X. M. Ren and Y. Zhao, Sol-gel derived multiferroic BiFeO3 ceramics with large polarization and weak ferromagnetism, Appl. Phys. Lett. 89 (2006) 3.
DOI: 10.1063/1.2345603
Google Scholar
[13]
J.H. Xu, H. Ke, D.C. Jia, W. Wang and Y. Zhou, Low-temperature synthesis of BiFeO3 nanopowders via a sol–gel method, J. Alloy. Compd. 472 (2009) 473-477.
DOI: 10.1016/j.jallcom.2008.04.090
Google Scholar
[14]
L.C. Wang, Z.H. Wang, S.L. He, X. Li, P.T. Lin, J.R. Sun and B.G. Shen, Enhanced magnetization and suppressed current leakage in BiFeO3 ceramics prepared by spark plasma sintering of sol–gel derived nanoparticles, Physica B. 407 (2012) 1196-1202.
DOI: 10.1016/j.physb.2011.12.136
Google Scholar
[15]
X.W. Qi, H.J. Xu, X.Y. Zhang and J.Q. Qi, Synthesis of multiferroic BiFeO3 powders by sol-gel auto-combustion, Adv. Mater. Res. 412 (2011) 99-102.
DOI: 10.4028/www.scientific.net/amr.412.99
Google Scholar
[16]
S. Godara, N. Sinha, G. Ray and B. Kumar, Combined structural, electrical, magnetic and optical characterization of bismuth ferrite nanoparticles synthesized by auto-combustion route, J. As. Ceram. Soc. 2 (2014) 416-421.
DOI: 10.1016/j.jascer.2014.09.001
Google Scholar
[17]
A. Jaiswal, R. Das, K. Vivekanand, P.M. Abraham, S. Adyanthaya, and P. Poddar, Effect of reduced particle size on the magnetic properties of chemically synthesized BiFeO3 nanocrystals, J. Phys. Chem. 114 (2010) 2108-2115.
DOI: 10.1021/jp910745g
Google Scholar
[18]
Y.P. Wang, L. Zhou, M.F. Zhang, X.Y. Chen, J.M. Liu and Z.G. Liu, Room-temperature saturated ferroelectric polarization in BiFeO3 ceramics synthesized by rapid liquid phase sintering, Appl. Phys. Lett. 84 (2004) 1731.
DOI: 10.1063/1.1667612
Google Scholar
[19]
H. Ke, W. Wang, Y. Wang, J. Xu, D. Jia, Z. Lu and Y. Zhou, Factors controlling pure-phase multiferroic BiFeO3 powders synthesized by chemical co-precipitation, J. Alloy. Compd. 509 (2011) 2192-2197.
DOI: 10.1016/j.jallcom.2010.09.213
Google Scholar