Microwave Assisted Preparation of YAG and Yb:YAG Transparent Ceramic Nanopowders for Laser Crystal

Article Preview

Abstract:

YAG and Yb:YAG transparent ceramic nanopowders for laser crystal were synthesized by microwave-assisted alkoxide hydrolysis precipitation method. The YAG and Yb:YAG nanopowders were characterized by differential thermal analysis and thermo gravimetric analysis (DTA-TG), infrared spectrum (IR), X-ray diffraction (XRD), field emission scanning electron microscope (FESEM) and photoluminescence (PL) spectrum. The results show that the crystallizing temperature of the precursor of YAG and Yb:YAG is about 930 °C. The pure phase YAG and Yb:YAG nanopowders can be obtained at microwave radiation power of 385 W, microwave radiation time of 30 min and sintering temperature of 1100 °C. The average particle size of YAG is about 120 nm. Yb:YAG is uniform sphere and the average sizes is about 100 nm. The intensity of luminescence of Yb:YAG nanopowders decreased with the increasing of microware time. The maximum luminous intensity of the Yb:YAG nanopowders can be obtained when the microwave radiation is 30 min.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

76-79

Citation:

Online since:

July 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Peters, C. Kränkel, S.T. Fredrich-Thornton, K. Beil, K. Petermann, G. Huber, O.H. Heckl, C.R.E. Baer, C.J. Saraceno, T. Südmeyer, U. Keller, Thermal analysis and efficient high power continuous-wave and mode-locked thin disk laser operation of Yb-doped sesquioxides, Appl Phys B. 102 (2011).

DOI: 10.1007/s00340-011-4428-0

Google Scholar

[2] T. Südmeyer, C. Kränkel, C.R.E. Baer, O.H. Heckl, C.J. Saraceno, M. Golling, R. Peters, K. Petermann, G. Huber, U. Keller, High-power ultrafast thin disk laser oscillators and their potential for sub-100-femtosecond pulse generation, Appl Phys B. 97 (2009).

DOI: 10.1007/s00340-009-3700-z

Google Scholar

[3] M. Ostermeyer, A. Straesser, Theoretical investigation of feasibility of Yb: YAG as laser material for nanosecond pulse emission with large energies in the Joule range, Opt. Comm. 274 (2007) 422-428.

DOI: 10.1016/j.optcom.2007.03.002

Google Scholar

[4] L.A. Diaz-Torres, E. De la Rosa, P. Salas, H. Desirena, Enhanced cooperative absorption and upconversion in Yb3+ doped YAG nanophosphors, Opt. Mater. 27 (2005) 1305-1310.

DOI: 10.1016/j.optmat.2004.10.020

Google Scholar

[5] A. Tarafder, A.R. Molla, B. Karmakar, Effects of nano-YAG (Y3Al5O12) crystallization on the structure and photoluminescence properties of Nd3+-doped K2O-SiO2-Y2O3-Al2O3 glasses, Solid State Sci. 12 (2010) 1756-1763.

DOI: 10.1016/j.solidstatesciences.2010.07.027

Google Scholar

[6] J.Y. Chong, Y.L. Zhang, B.K. Wagner, Z.T. Kang, Co-precipitation synthesis of YAG: Dy nanophosphor and its thermometric properties, J. Alloy. Compd. 581 (2013) 484-487.

DOI: 10.1016/j.jallcom.2013.07.122

Google Scholar

[7] W.G. Gao, Y.S. Hu, W.D. Zhuang, S.S. Zhang, Y.H. Liu, H.Q. He, A novel method for the synthesis of YAG: Ce phosphor, J. Rare Earth. 27 (2009) 886-890.

DOI: 10.1016/s1002-0721(08)60355-5

Google Scholar

[8] S.N. Bagayev, A.A. Kaminskii, Y.L. Kopylov, V.B. Kravchenko. Problems of YAG nanopowders compaction for laser ceramics, Opt. Mater. 3 (2011) 702-705.

DOI: 10.1016/j.optmat.2010.11.009

Google Scholar