[1]
Ibrahim A, Abdallah M, Mostafa S F, An experimental investigation on the W-Cu composites, J. Materials and Design. 2009, 30(4): 1398-1403.
DOI: 10.1016/j.matdes.2008.06.068
Google Scholar
[2]
Hamidi AG, Arabi H, Rastegari S, A feasibility study of W-Cu composites production by high pressure compression of tungsten powder, Inter. J. Refract. Metals & Hard Mater. 2011, 29: 123-127.
DOI: 10.1016/j.ijrmhm.2010.09.002
Google Scholar
[3]
Wang C C, Lin Y C, Feasibility study of electrical discharge machining for W/Cu composite, International Journal of Refractory Metals and Hard Materials. 2009, 27(5): 872-882.
DOI: 10.1016/j.ijrmhm.2009.04.005
Google Scholar
[4]
Wang Z, Li X, Zhu J, Dynamic consolidation of W–Cu nanocomposites from W-CuO powder mixture, Materials Science and Engineering. 2010, 527(21): 6098-6101.
DOI: 10.1016/j.msea.2010.05.077
Google Scholar
[5]
Shen W, Li Q, Chang K, Manufacturing and testing W/Cu functionally graded material mock-ups for plasma facing components, Journal of Nuclear Materials. 2007, 367: 1449-1452.
DOI: 10.1016/j.jnucmat.2007.04.032
Google Scholar
[6]
Tang X, Zhang H, Du D, Fabrication of W–Cu functionally graded material by spark plasma sintering method, Inter. J. Refractory Metals and Hard Materials. 2014, 42: 193-199.
DOI: 10.1016/j.ijrmhm.2013.09.005
Google Scholar
[7]
Pintsuk G, Brünings S E, Döring J E, Development of W/Cu-functionally graded materials, Fusion Engineering and Design. 2003, 66: 237-240.
DOI: 10.1016/s0920-3796(03)00220-5
Google Scholar
[8]
Wang C P, Lin L C, Xu L S, Effect of blue tungsten oxide on skeleton sintering and infiltration of W–Cu composites, Inter. J. Refractory Metals and Hard Materials. 2013, 41: 236-240.
DOI: 10.1016/j.ijrmhm.2013.04.007
Google Scholar
[9]
Azar GTP, Rezaie H R, Razavizadeh H, Synthesis and consolidation of W–Cu composite powders with silver addition, Inter. J. Refractory Metals and Hard Materials. 2012, 31: 157-163.
DOI: 10.1016/j.ijrmhm.2011.10.010
Google Scholar
[10]
Amirjan M, Zangeneh-Madar K, Parvin N, Evaluation of microstructure and contiguity of W/Cu composites prepared by coated tungsten powders, Inter. J. Refract. Metals & Hard Mater. 2009, 27: 729-733.
DOI: 10.1016/j.ijrmhm.2008.12.008
Google Scholar
[11]
Warren R, Andersson C H, Silicon carbide fibres and their potential for use in composite materials, J. Composites. 1984, 15(2): 101-111.
DOI: 10.1016/0010-4361(84)90721-3
Google Scholar
[12]
Gan K K, Chen N, Wang Y, SiC/Cu composites with tungsten coating prepared by powder metallurgy, J. Materials science and technology. 2007, 23(1): 119-122.
DOI: 10.1179/174328407x158532
Google Scholar
[13]
Shi X L, Wang M, Zhang S, Fabrication and properties of W–20Cu alloy reinforced by titanium nitride coated SiC fibers, Inter. J. Refractory Metals and Hard Materials. 2013, 41: 60-65.
DOI: 10.1016/j.ijrmhm.2013.02.002
Google Scholar
[14]
Zhang L, Chen W, Luo G, Low-temperature densification and excellent thermal properties of W–Cu thermal-management composites prepared from copper-coated tungsten powders, Journal of Alloys and Compounds. 2014, 588: 49-52.
DOI: 10.1016/j.jallcom.2013.11.003
Google Scholar
[15]
Lee Y J, Lee B H, Kim G S, Evaluation of conductivity in W-Cu composites through the estimation of topological microstructures, Materials Letters. 2006, 60(16): 2000-(2003).
DOI: 10.1016/j.matlet.2005.12.113
Google Scholar