Microstructure and Mechanical Properties of Multiscale Zirconia Ceramics Prepared by Field Assisted Sintering Technique

Article Preview

Abstract:

Two kinds of powders of 3 mol. % yttria stabilized zirconia (3Y–TZP) with different particles sizes; one was 20 nm denoted by N whereas the other was 0.5 µm denoted by M, were mechanically mixed via ball milling machine using different amounts of N wt. % to obtain multiscale zirconia composite powder. Then the mixed powders were sintered by field assisted sintering technique (FAST). The effect of N content on the microstructure as well as on mechanical properties of zirconia is investigated. Results show that the microstructure of M completely surrounded by N emerged in zirconia composites, and tetragonal phase is presented in all the sintered samples. The obtained zirconia ceramics with 15 wt. % N own a highly dense structure (~ 99.9 % relative density) and high flexural strength of 813.59 MPa wherein a 15 % increase in flexural strength compared to zirconia ceramics without adding N, but the fracture toughness of the composites just lightly decreases. The improved flexural strength of the composites is caused by the multiscale effect.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

354-359

Citation:

Online since:

July 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Minh, N.Q., Ceramic fuel cells. Journal of the American Ceramic Society 76 (1993) 563-588.

DOI: 10.1111/j.1151-2916.1993.tb03645.x

Google Scholar

[2] X. Wu, X. Wu, Q. Liang, J. Fan, D. Weng, Z. Xie, Wei, Shiqiang, Structure and oxygen storage capacity of Pr/Nd doped CeO 2–ZrO 2 mixed oxides. Solid state sciences. 9(2007) 636-643.

DOI: 10.1016/j.solidstatesciences.2007.04.016

Google Scholar

[3] J. m. Chevalier, L. Gremillard, A. V. Virkar, and D. R. Clarke, The tetragonal monoclinic transformation in zirconia: lessons learned and future trends. Journal of the American Ceramic Society. 92(2009) 1901-(1920).

DOI: 10.1111/j.1551-2916.2009.03278.x

Google Scholar

[4] A. Suresh, M. J. Mayo, W. D. Porter, and C. J. Rawn, Crystallite and Grain Size Dependent Phase Transformations in Yttria Doped Zirconia. Journal of the American Ceramic Society. 86 (2003) 360-362.

DOI: 10.1111/j.1151-2916.2003.tb00025.x

Google Scholar

[5] A. Heuer, F. Lange, M. Swain, and A. Evans, Transformation toughening: an overview. Journal of the American Ceramic Society. 69(1986) i-iv.

DOI: 10.1111/j.1151-2916.1986.tb07400.x

Google Scholar

[6] Piconi, C. and G. Maccauro, Zirconia as a ceramic biomaterial. Biomaterials. 20(1999). 1-25.

DOI: 10.1016/s0142-9612(98)00010-6

Google Scholar

[7] Kelly, J.R. and I. Denry, Stabilized zirconia as a structural ceramic: an overview. Dental Materials. 24 (2008) 289-298.

DOI: 10.1016/j.dental.2007.05.005

Google Scholar

[8] Hannink, R.H.J., P.M. Kelly, and B.C. Muddle, Transformation Toughening in Zirconia-Containing Ceramics. Journal of the American Ceramic Society. 83(2000) 461-487.

DOI: 10.1111/j.1151-2916.2000.tb01221.x

Google Scholar

[9] Zhang, Z., L. Teng, and W. Li, Mechanical properties and microstructures of hot-pressed MgAlON–BN composites. Journal of the European Ceramic Society. 27 (2007) 319-326.

DOI: 10.1016/j.jeurceramsoc.2006.04.184

Google Scholar

[10] J. Hong, L. Gao, S. Torre, H. Miyamoto, and K. Miyamoto, Spark plasma sintering and mechanical properties of ZrO 2 (Y 2 O 3)–Al 2 O 3 composites. Materials Letters. 43(2000) 27-31.

DOI: 10.1016/s0167-577x(99)00225-6

Google Scholar

[11] Sun, Y. -h., Y. -f. Zhang, and J. -k. Guo, Microstructure and bending strength of 3Y-TZP ceramics by liquid-phase sintering with CAS addition. Ceramics international. 29 (2003) 229-232.

DOI: 10.1016/s0272-8842(02)00097-4

Google Scholar

[12] S. Li, H. Izui, M. Okano, W. Zhang, and T. Watanabe, Microstructure and mechanical properties of ZrO2(Y2O3)–Al2O3 nanocomposites prepared by spark plasma sintering. Particuology. 10 (2012) 345-351.

DOI: 10.1016/j.partic.2011.05.002

Google Scholar

[13] H. -Y. Jin, M. Ishiyama, G. -J. Qiao, J. -Q. Gao, and Z. -H. Jin, Plasma active sintering of silicon carbide. Materials Science and Engineering: A. 483 (2008) 270-273.

DOI: 10.1016/j.msea.2006.09.134

Google Scholar

[14] Z. Huang, S. Ma, J. Xing, and B. Wang, Bulk Fe2B crystal fabricated by mechanical ball milling and plasma activated sintering. Journal of Alloys and Compounds. 582 (2014) 196-200.

DOI: 10.1016/j.jallcom.2013.07.205

Google Scholar

[15] Y. Zhang, F. Chen, R. Tu, Q. Shen, and L. Zhang, Field assisted sintering of dense Al-substituted cubic phase Li7La3Zr2O12 solid electrolytes. Journal of Power Sources. 268 (2014) 960-964.

DOI: 10.1016/j.jpowsour.2014.03.148

Google Scholar

[16] Kern, F. and P. Palmero, Microstructure and mechanical properties of alumina 5vol% zirconia nanocomposites prepared by powder coating and powder mixing routes. Ceramics International. 39(2013) 673-682.

DOI: 10.1016/j.ceramint.2012.06.078

Google Scholar

[17] Bernard-Granger, G. and C. Guizard, Spark plasma sintering of a commercially available granulated zirconia powder: I. Sintering path and hypotheses about the mechanism (s) controlling densification. Acta Materialia. 55(2007) 3493-3504.

DOI: 10.1016/j.actamat.2007.01.048

Google Scholar

[18] Mazaheri, M., A. Simchi, and F. Golestani-Fard, Densification and grain growth of nanocrystalline 3Y-TZP during two-step sintering. Journal of the European Ceramic Society. 28(2008) 2933-2939.

DOI: 10.1016/j.jeurceramsoc.2008.04.030

Google Scholar