Structural-Functional Integrative Mullitef/SiBN Composites with Excellent Wave-Transparent and Mechanical Properties

Article Preview

Abstract:

A structural-functional integrative wave-transparent material, consisted of BN coating and SiBN substrate, is synthesized through precursor infiltration pyrolysis (PIP) process. Then the technical parameters and procedures are obtained according to the key properties of the precursors. Studies on the microstructures and properties of the composite show that compact substrate and weak interface enhance the strength, and porous structure improves the dielectric performance of the composite. The composite exhibites good bending strength (~95.12 MPa), tensile strength (~34.95 MPa) and compressive strength (~80.92 MPa). Moreover the composite displays a low dielectric constant (4.17) and a low loss tangent (9.7×10-3) at room temperature. The composite has a low changing rate of dielectric constant (~2.01% per 100°C). These results imply that the composite with excellent mechanical and dielectric properties can be an excellent wave-transparent material applied in the fields of aerospace.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

498-505

Citation:

Online since:

July 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] V. Bheemreddy, K. Chandrashekhara, L.R. Dharani, G.E. Hilmas, Computational Materials Science 79 (0) (2013) 663-673.

DOI: 10.1016/j.commatsci.2013.07.026

Google Scholar

[2] C. H. Chen, R. R. Chang, P. H. Jeng, Mechanics of Materials 20 (2) (1995) 165-181.

Google Scholar

[3] R. Kerans, T. Parthasarathy, Composites Part A 30 (4) (1999) 521-524.

Google Scholar

[4] H. Liu, H. Cheng, J. Wang, G. Tang, Ceramics International 36 (7) (2010) 2033-(2037).

Google Scholar

[5] R. Naslain, Design, Composites Science and Technology 64 (2) (2004) 155-170.

Google Scholar

[6] Y. Wang, H. Cheng, J. Wang, Ceramics International 40 (3) (2014) 4707-4715.

Google Scholar

[7] B. Li, C.R. Zhang, S.Q. Wang, F. Cao, Y.G. Jiang, Refractories & Industrial Ceramics 48 (4) (2007) 280-283.

Google Scholar

[8] X. Yang, H. F. Hu, Y. D. Zhang, Z. H. Chen, Ceramics International 40 (7, Part A) (2014) 9087-9094.

Google Scholar

[9] H.Q. Ly, R. Taylor, R.J. Day, J Mater Sci 36 (16) (2001) 4027-4035.

Google Scholar

[10] M. Birot, J.P. Pillot, J. Dunogues, Chemical Reviews 95 (5) (2002) 1443-1477.

Google Scholar

[11] S. Reschke, C. Haluschka, R. Riedel, Z. Lences, D. Galusek, Journal of the European Ceramic Society 23 (11) (2003) 1963-(1970).

DOI: 10.1016/s0955-2219(02)00420-x

Google Scholar

[12] A.H. Tavakoli, P. Gerstel, J.A. Golczewski, J. Bill, Journal of Materials Research 25 (11) (2010) 2150-2158.

Google Scholar

[13] A.H. Tavakoli, P. Gerstel, J.A. Golczewski, J. Bill, Journal of Materials Research 26 (4) (2011) 600-608.

Google Scholar

[14] Y.G. Jiang, C.R. Zhang, F. Cao, S.Q. Wang, G.J. Qi, Y.B. Cao, Materials Science & Technology 23 (7) (2007) 880-882.

Google Scholar

[15] B. Toury, P. Miele, D. Cornu, H. Vincent, J. Bouix, Advanced Functional Materials 12 (3) (2002) 228-234.

DOI: 10.1002/1616-3028(200203)12:3<228::aid-adfm228>3.0.co;2-u

Google Scholar

[16] T. Wideman, E.E. Remsen, E. Cortez, V.L. Chlanda, L.G. Sneddon, Chem: mater 10 (1998) 412-421.

DOI: 10.1021/cm970572r

Google Scholar

[17] X. Xu, S. Mei, J.M.F. Ferreira, Journal of the European Ceramic Society 26 (3) (2006) 337-341.

Google Scholar

[18] F. Cao, Z.Y. Fang, F. Chen, C.R. Zhang, Q. Shen, S.Q. Wang, B. Li, Key Engineering Materials 508 (2012).

Google Scholar

[19] P. Colombo, G. Mera, R. Riedel, G.D. Sorarù, Journal of the American Ceramic Society volume 93 (7) (2010) 1805-1837(1833).

Google Scholar

[20] D. Li, C. Zhang, B. Li, F. Cao, S. Wang, J. Li, Materials Letters 68 (0) (2012) 222-224.

Google Scholar