Effect of Sintering Temperature on the Physical Properties and Microstructure of In Situ Nitrides Bonded MgAl2O4-C Refractories

Article Preview

Abstract:

The in situ nitrides bonded MgAl2O4-C refractories were prepared by using high quality fused spinel (MgAl2O4 ≥ 97%), natural flake graphite (C ≥ 96%) and silicon powder (Si ≥ 98%) as raw materials and the liquid calcium lignosulfonate with a concentration of 1.25 g/ml was used as binder (4 wt%). The effect of sintering temperatures on physical properties and phase compositions were investigated. The results show that β-sialon and α-Si3N4 were formed in the samples sintered at 1400°C, 1450°C and 1500°C, and AlON and AlN were formed in the samples sintered at 1550°C. The sample that sintered at 1450°C exhibits the best bulk density and apparent porosity of 2.84 g/cm3 and 14.73%, respectively, and the highest compressive strength

You might also be interested in these eBooks

Info:

Periodical:

Pages:

591-594

Citation:

Online since:

July 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] V. munoz, A.G.T. Martinez. Thermal evolution of Al2O3-MgO-C refractories, J. Proce. Mater. Sci. 1 (2011), 410-417.

Google Scholar

[2] P.P. Zhang, P. Liu, Y. Sun, J. Wang, et al. Aqueous Gelcesting of the Transtrent MgAl2O4 Spinel Ceramics, J. Alloys. Compd. 646 (2015), 272-275.

Google Scholar

[3] Nemati. Z, A. Moetakef, C. G. Investigation of graphite oxidation kinetics in MgO-C composite via artificial neural network approach, J. Comp. Mater. Sci. 39(2007), 723-728.

DOI: 10.1016/j.commatsci.2006.09.008

Google Scholar

[4] Luo. M, Li. Y. W, Sang. S. B, et, al. In-situ formation of carbon nanotubes and ceramic whiskers in Al2O3-C refractories with addition of Ni-catalyzed phenolic resin, J. Mater. Sci. Eng. 558(2012), 533-542.

DOI: 10.1016/j.msea.2012.08.044

Google Scholar

[5] S. Sanjabi, A. Obeydavi. Synthesis and characterization of nanocrystalline MgAl2O4 spinel via modified sol-gel method, J. Alloys. Compd. 645 (2015), 535-540.

DOI: 10.1016/j.jallcom.2015.05.107

Google Scholar

[6] O. Morey, P. Goeuriot, P. Grosseau, B. Guilhot, et al. Spectroscopic analysis of MgAlON spinel powders: influence of nitrogen content, J. Solid State Inoics. 159 (3) (2003), 381-388.

DOI: 10.1016/s0167-2738(02)00918-9

Google Scholar

[7] Li. X. C, Zhu. B. Q, Wang. T. X. Electromagnetic field effects on the formation of MgO dense layer in low carbon MgO-C refractories, J. Ceram. Int. 38(2012), 2883-2887.

DOI: 10.1016/j.ceramint.2011.11.061

Google Scholar

[8] Roungos. V, Aneziris. C. G. Improved thermal shock performance of Al2O3-C refractories due to nano-scaled additives, J. Ceram. Int. 38(2012), 919-927.

DOI: 10.1016/j.ceramint.2011.08.011

Google Scholar

[9] S. Pichlbauer, H. Harmuth, Z. Lences, P. Sajgalik. Preliminary investigation of the production of MgAlON bonded refractories, J. Eur. Ceram. Soc. 32 (9) (2012), 2013-(2018).

DOI: 10.1016/j.jeurceramsoc.2011.10.036

Google Scholar

[10] J. Zheng, B. Forslund. Carbothermal Preparation of β-Sialon Powder at Elevated Nitrogen Pressures, J. Eur. Ceram. Soc. 19 (1998), 175-185.

DOI: 10.1016/s0955-2219(98)00193-9

Google Scholar

[11] Z. Aly, E. R. Vance, D. S. Perera, J. V. Hanna, et al. Aqueous leachability of metakaolin-based geopolymers with molar ratios of Si/Al=1. 5-4, J. Nucl. Mater. 78 (2008), 172-179.

DOI: 10.1016/j.jnucmat.2008.06.015

Google Scholar