Synthesis and Antibacterial Activities of Ag/ZnO Nanoparticles

Article Preview

Abstract:

Ag/ZnO nanoparticles with different Ag concentrations were fabricated through sol-gel method under 500 °C for 60 min with a heating rate 5 °C·min-1. The phase, the crystallographic structure and the surface topography of the Ag/ZnO nanoparticles were charactered by XRD and SEM. The antibacterial activities of the Ag/ZnO nanoparticles were performed by disc diffusion method. The results indicate that the as-prepared Ag/ZnO nanoparticles display great antibacterial activity than ZnO nanoparticle without Ag doping. And Ag/ZnO nanoparticles with 5 mol% Ag concentration show more excellent antibacterial activity toward S.aureus, B. subtilis, E. coli and P. aeruginosa with diameters zones of inhibition 21.7, 18.5, 18.4 and 17.8 mm than other Ag/ZnO nanoparticles. And the mechanism of ZnO antibacterial activity is discussed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

714-717

Citation:

Online since:

July 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Bao, M.A. Zimmler, F. Capasso, Broadband ZnO single-nanowire light-emitting diode, Nano Letters 6 (2006) 1719-1722.

DOI: 10.1021/nl061080t

Google Scholar

[2] X.D. Bai, P.X. Gao, Z.L. Wang, et al, Dual-mode mechanical resonance of individual ZnO nanobelts, Appl. Phys. Lett. 82 (2003) 4806.

DOI: 10.1063/1.1587878

Google Scholar

[3] H.F. Lin, S.C. Liao, S.W. Hung, The dc thermal plasma synthesis of ZnO nanoparticles for visible-light photocatalyst, J. Photochem. Photobiol. A 174 (2005) 82-87.

DOI: 10.1016/j.jphotochem.2005.02.015

Google Scholar

[4] Y. Lai, M. Meng, Y. Yu, One-step synthesis, characterization and mechanistic study of nanosheets-constructed fluffy ZnO and Ag/ZnO spheres used for Rhodamine B photodegradation, Appl. Catal. B-Environ. 100 (2010) 491-501.

DOI: 10.1016/j.apcatb.2010.08.027

Google Scholar

[5] Y.W. Hu, H.R. He, Y.M. Ma, et al, Fabrication and wettability conversion of ZnO/Ag composite films, Chem. J. Chin. Univ. 34 (2013), 295-298.

Google Scholar

[6] C. Ren, B. Yang, M. Wu, et al, Synthesis of Ag/ZnO nanorods array with enhanced photocatalytic performance, J. Hazard. Mater. 182 (2010) 123-129.

Google Scholar

[7] K. Ishibashi, A. Fujishima, T. Watanabe, et al, Detection of active oxidative species in TiO2 photocatalysis using the fluorescence technique, Electrochem. Commun. 2(2000) 207-210.

DOI: 10.1016/s1388-2481(00)00006-0

Google Scholar

[8] Q. Xiao, Z.C. Si, J. Zhang, et al, Photoinduced hydroxyl radical and photocatalytic activity of samarium-doped TiO2 nanocrystalline, J. Hazard. Mater. 150 (2008) 62-67.

DOI: 10.1016/j.jhazmat.2007.04.045

Google Scholar

[9] M. Fang, J.H. Chen, X.L. Xu, et al, Antibacterial activities of inorganic agents on six bacteria associated with oral infections by two susceptibility tests, Int. J. Antimicrob. Agents 27 (2006) 513-517.

DOI: 10.1016/j.ijantimicag.2006.01.008

Google Scholar

[10] N. Padmavathy, R. Vijayaraghavan, Enhanced bioactivity of ZnO nanoparticles-anantim- icrobial study, Sci. Technol. Adv. Mater. 9 (2008) 43-48.

Google Scholar