Synthesis of V6O13 Flowers-Like with Control pH for Li-Ion Battery Cathodes

Article Preview

Abstract:

To improve electrochemical performance of Li ion battery , we synthesis flower-like V6O13 in oxalic acid solvent with HCl. The composition and morphology of the V6O13 were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) measurements, respectively. The synthesized flowers-like V6O13 are less than 600nm in the width of the ribbon and have purity phase of the V6O13.The electrochemical performance of the flowers-like V6O13 were characterized by charge and discharge performance, EIS and CV. The flowers-like V6O13 exhibited high electrochemical performance.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

710-713

Citation:

Online since:

July 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Wang, G.Z. Cao, Developments in Nanostructured Cathode Materials for High-Performance Lithium-Ion Batteries, Adv. Mater. 20, 2251–2269 (2008).

DOI: 10.1002/adma.200702242

Google Scholar

[2] H. Zhang, J. Neilson, D. Morse, Topotactically synthesized ultralong LiV3O8 nanowire cathode materials for high-rate and long-life rechargeable lithium batteries, Phys. Chem. C 114, 19550–19555 (2010).

DOI: 10.1038/am.2012.36

Google Scholar

[3] H. Li, P. He, Y. Wang, E. Hosono, H. Zhou, Single-crystal H2V3O8 nanowires: a competitive anode with large capacity for aqueous lithium-ion batteries, J. Mater. Chem. 21, 10999–11009 (2011).

DOI: 10.1039/c0jm02788j

Google Scholar

[4] H.M. Zeng, Y. Zhao, Y.J. Hao, Q.Y. Lai, J.H. Huang, X.Y. Ji, Preparation and capacitive properties of sheet V6O13 for electrochemical supercapacitor, J. Alloys Compd. 477, 800–804 (2009).

DOI: 10.1016/j.jallcom.2008.10.100

Google Scholar

[5] Y. Zhang, M. Zhou, M. Fan, C. Huang, C. Chen, Y. Cao et al., Improvement of the electrochemical properties of V3O7×H2O nanobelts for Li battery application through synthesis of V3O7@C core-shell nanostructured composites, J. Curr. Appl. Phys. 11, 1159–1163 (2011).

DOI: 10.1016/j.cap.2011.02.010

Google Scholar

[6] A.Q. Pan, H.B. Wu, X.W. Lou, Template-Free Synthesis of Hierarchical Vanadium-Glycol ate Hollow Microspheres and Their Conversion to V2O5 with Improved Lithium, J. Storage Capability Chem. Eur. J. 19, 494–500 (2013).

DOI: 10.1002/chem.201203596

Google Scholar

[7] A.Q. Pan, H.B. Wu, X.W. Lou, Template-Free Synthesis of VO2 Hollow Microspheres with Various Interiors and Their Conversion into V2O5 for Lithium-Ion Batteries. Angew J Chem. Int. Ed. 52, 2226–2230 (2013).

DOI: 10.1002/anie.201209535

Google Scholar

[8] A.Q. Pan, H.B. Wu, X.W. Lou, Uniform V2O5 nanosheet-assembled hollow microflowers with excellent lithium storage properties. Energy Environ. Sci. 6, 1476–1479 (2013).

DOI: 10.1039/c3ee40260f

Google Scholar

[9] H. Heli, H. Yadegari, A. Jabbari, Low-temperature synthesis of LiV3O8 nanosheets as an anode material with high power density for aqueous lithium-ion batteries, Mater. Chem. Phys. 126, 476–479 (2011).

DOI: 10.1016/j.matchemphys.2010.12.057

Google Scholar

[10] O. Bergstroem, T. Gustafsson, J.O. Thomas, Electrochemically Lithiated Vanadium Oxide, Li3V6O13, Solid State Ionics 110, 179–186 (1998).

DOI: 10.1002/chin.199850005

Google Scholar

[11] Murphy D, Christian P, DiSalvo F, et al. Vanadium Oxide Cathode Materials for Secondary Lithium Cells. Journal of The Electrochemical Society, 1979, (126): 497-499.

DOI: 10.1149/1.2129070

Google Scholar

[12] M.Y. Sai'di, R. Koksbang, E.S. Sai'di, H. Shi, J. Barker, Rocking-chair batteries based on LiMn2O4 and V6 O13, J. Power Sources 68, 726–729 (1997).

DOI: 10.1016/s0378-7753(97)02527-5

Google Scholar

[13] I. Olsen, J. Barker, R. Koksbang, Impedance measurements on the lithium-polymer electrolyte interface, Solid State Ionics 83, 125–133(1996).

DOI: 10.1016/0167-2738(95)00241-3

Google Scholar

[14] J. Barker, E.S. Saidi, M.Y. Saidi, Cathode-active material blends comprising LixMn2O4 (0 < x £ 2) Electrochim. Acta 40, 949–952(1995).

Google Scholar

[15] C. Leger, S. Bach, J.P. Pereira-Ramos, The sol–gel chromium-modified V6O13 as a cathodic material for lithium batteries, J. Solid State Electrochem. 11, 71–76 (2007).

DOI: 10.1007/s10008-005-0071-1

Google Scholar

[16] Z.Y. Huang, H.M. Zeng, L. Xue, et al., Synthesis of vanadium oxide, V6O13 hollow-flowers materials and their application in electrochemical supercapacitors, J. Alloys Compd. 509, 10080–10085 (2011).

DOI: 10.1016/j.jallcom.2011.08.042

Google Scholar

[17] H Liu, J Huang, X Li, J Liu, Y Zhang, K Du. Flower-like SnO2/graphene composite for high-capacity lithium storage, Applied Surface Science. 2012 (258): 4917-4921.

DOI: 10.1016/j.apsusc.2012.01.119

Google Scholar

[18] Y Li, J Yao, E Uchaker, et al. Leaf-like V2O5 nanosheets fabricated by a facile green approach as high energy cathode material for lithium-ion batteries, Adv. Energy Mater. 2013 (3): 1171-1175.

DOI: 10.1002/aenm.201300188

Google Scholar

[19] C Wu, Y Xie. Promising vanadium oxide and hydroxide nanostructures: from energy storage to energy saving, Energy and Environmental Science. 2010 (3): 1191-1206.

DOI: 10.1039/c0ee00026d

Google Scholar