Synthesis and Ionic Conductivity of KAlSi3O8

Article Preview

Abstract:

In this study, KAlSi3O8 was synthesized by a solid-phase reaction at 900, 1000 and 1100 °C, using K2CO3, Al2O3 and SiO2 as the starting materials. The powder X-ray diffraction profile of the compound thus prepared was confirmed to contain a mixture of crystalline and glass phases. In addition, a higher sintering temperature of greater than 1000 °C possibly led to the decrease in the crystalline phase. From the temperature dependence of dc conductivity, activation energies for ionic transport were estimated to be 0.79–0.84 eV. The frequency-dependence of the real part of electrical conductivity suggests that the mechanism of ionic transport in the dispersion region possibly depends on the crystallinity of KAlSi3O8.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

8-12

Citation:

Online since:

July 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Knauth, Solid State Ionics, 180 (2009) p.911–916.

Google Scholar

[2] J. W. Fergus, Journal of Power Sources, 195 (2010) p.4554–4569.

Google Scholar

[3] J. W. Fergus, Solid State Ionics, 227 (2012) pp.102-112.

Google Scholar

[4] B. L. Ellis and L. F. Nazar, Current Opinion in Solid State and Materials Science, 16 (2012) p.168–177.

Google Scholar

[5] M. Marcinek, J. Syzdek, M. Marczewski, M. Piszcz, L. Niedzicki, M. Kalita, A. Plewa-Marczewska, A. Bitner, P. Wieczorek, T. Trzeciak, M. Kasprzyk, P. Łężak, Z. Zukowska, A. Zalewska, W. Wieczorek, Solid State Ionics, 276 (2015) p.107–126.

DOI: 10.1016/j.ssi.2015.02.006

Google Scholar

[6] E. I. Burmakin and G. Sh. Shekhtman, Russian J. Electrochem., 50, (2014) pp.496-499.

Google Scholar

[7] W. G. Wyckoff, Crystal Structures Vol. 4, Second Edition, Interscience Publishers, (1968) pp.445-446.

Google Scholar

[8] N. L. Organova, I. M. Marsii, I. V. Rozhdestvenskaya, T. I. Ivanova, N. D. Zakharov, V. V. Nasedkin, and S. B. Borisovskii, Crystallography Reports, 44 (1999) pp.770-775.

Google Scholar

[9] E. Prince, G. Donnay, and R. F. Martin, American Mineralogist, 58, (1973) pp.500-507.

Google Scholar

[10] H. Yamada, Y. Matsui, and E. Ito, Mineralogical Journal, 12, (1984) pp.29-34.

Google Scholar

[11] M. Taylor and G. E. Brown Jr., Mark Taylor∗, · Gordon E. Brown Jr. Geochimica et Cosmochimica Acta, 43, (1979) pp.61-75.

DOI: 10.1016/0016-7037(79)90047-4

Google Scholar

[12] W. L. Brown and I. Parson, Mineralogical Magazine, 53 (1989) pp.25-42.

Google Scholar

[13] H. Behrens, W. Johannes, and H. Schmalzried, Physics and Chemistry of Minerals, 17, (1990) pp.62-78.

Google Scholar

[14] L. Sanchez-Munoz, L. Nistor, G. V. Tendeloo, and J. Sanz, Journal of Electron Microscopy, 47 (1998) pp.17-28.

Google Scholar

[15] A. Jones, M. S. Islam, M. Mortimer, and D. Palmer, Physics and Chemistry of Minerals, 31 (2004) pp.313-320.

Google Scholar

[16] B. Roling, A. Happe, K. Funke, and M. D. Ingram, Physical Review Letters, 78 (1997) pp.2160-2163.

Google Scholar

[17] B. Roling, Solid State Ionics, 105 (1998) pp.185-193.

Google Scholar

[18] K. Funke, B. Roling, and M. Lange, Solid State Ionics, 105 (1998) pp.195-208.

Google Scholar

[19] R. Belin, G. Taillades, A. Pradel, and M. Ribes, Solid State Ionics, 136-137 (2000) pp.1025-1029. Gordon E Brown Jr.

Google Scholar