Electrophoretic Deposition of Functionalized Multi-Walled Carbon Nanotubes (f-MWCNTs)-Polyaniline (PANi)

Article Preview

Abstract:

Electrophoretic deposition (EPD) is a technique that uses electric field to deposit particles onto a conductive substrate. In this study, EPD technique has been utilized for fabrication of acid functionalized multi-walled carbon nanotubes (f-MWCNTs) and polyaniline (PANi) or denoted as (f-MWCNTs-PANi) nanocomposite film. The nanocomposite was prepared using ex-situ synthesis. This study revealed that the f-MWCNTs and protonated PANi in dimethyl formamide (DMF) can be well dispersed with addition of magnesium nitrate hexahydrate, Mg (NO3)2.6H2O. The fabricated films were characterized by Fourier Transform-Infrared Spectroscopy (FT-IR) and X-Ray Photoelectron Spectroscopy (XPS). Their surface morphologies were characterized by Field Emission Scanning Electron Microscope (FESEM) and Transmission Electron Microscope (TEM). FT-IR results indicate the presence of carboxyl groups in f-MWCNTs spectrum. The presence of PANi was detected in the spectrum of f-MWCNTs-PANi nanocomposite. These results were further supported by FESEM and TEM results that show the morphology of f-MWCNTs and PANi coating around their sidewalls. The use of Mg (NO3)2.6H2O as dispersant for f-MWCNTs and protonated PANi allowed efficient EPD of their nanocomposite film fabrication. The fabricated f-MWCNTs-PANi composite thin film has future application in the development of supercapacitor device.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

33-41

Citation:

Online since:

July 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. R. Boccaccini, J. Cho, J. A. Roether, B. J. C. Thomas, E. Jane Minay, and M. S. P. Shaffer, Electrophoretic deposition of carbon nanotubes, Carbon, vol. 44, pp.3149-3160, 12/ (2006).

DOI: 10.1016/j.carbon.2006.06.021

Google Scholar

[2] O. O. Van der Biest and L. J. Vandeperre, ELECTROPHORETIC DEPOSITION OF MATERIALS, Annual Review of Materials Science, vol. 29, pp.327-352, (1999).

DOI: 10.1146/annurev.matsci.29.1.327

Google Scholar

[3] A. R. Boccaccini and I. Zhitomirsky, Application of electrophoretic and electrolytic deposition techniques in ceramics processing, Current Opinion in Solid State and Materials Science, vol. 6, pp.251-260, 6/ (2002).

DOI: 10.1016/s1359-0286(02)00080-3

Google Scholar

[4] P. -C. Ma, N. A. Siddiqui, G. Marom, and J. -K. Kim, Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review, Composites Part A: Applied Science and Manufacturing, vol. 41, pp.1345-1367, 10/ (2010).

DOI: 10.1016/j.compositesa.2010.07.003

Google Scholar

[5] D. Bikiaris, A. Vassiliou, K. Chrissafis, K. M. Paraskevopoulos, A. Jannakoudakis, and A. Docoslis, Effect of acid treated multi-walled carbon nanotubes on the mechanical, permeability, thermal properties and thermo-oxidative stability of isotactic polypropylene, Polymer Degradation and Stability, vol. 93, pp.952-967, 5/ (2008).

DOI: 10.1016/j.polymdegradstab.2008.01.033

Google Scholar

[6] M. J. O'Connell, P. Boul, L. M. Ericson, C. Huffman, Y. Wang, E. Haroz, et al., Reversible water-solubilization of single-walled carbon nanotubes by polymer wrapping, Chemical Physics Letters, vol. 342, pp.265-271, 7/13/ (2001).

DOI: 10.1016/s0009-2614(01)00490-0

Google Scholar

[7] J. Stejskal and R. Gilbert, Polyaniline. Preparation of a conducting polymer (IUPAC technical report), Pure and Applied Chemistry, vol. 74, pp.857-867, (2002).

DOI: 10.1351/pac200274050857

Google Scholar

[8] L. Chen, H. Xie, Y. Li, and W. Yu, Carbon nanotubes with hydrophilic surfaces produced by a wet-mechanochemical reaction with potassium hydroxide using ethanol as solvent, Materials Letters, vol. 63, pp.45-47, 1/15/ (2009).

DOI: 10.1016/j.matlet.2008.08.048

Google Scholar

[9] Y. Gogotsi, N. Naguib, and J. A. Libera, In situ chemical experiments in carbon nanotubes, Chemical Physics Letters, vol. 365, pp.354-360, 10/15/ (2002).

DOI: 10.1016/s0009-2614(02)01496-3

Google Scholar

[10] O. -K. Park, N. H. Kim, G. -H. Yoo, K. Y. Rhee, and J. H. Lee, Effects of the surface treatment on the properties of polyaniline coated carbon nanotubes/epoxy composites, Composites Part B: Engineering, vol. 41, pp.2-7, 1/ (2010).

DOI: 10.1016/j.compositesb.2009.10.002

Google Scholar

[11] D. D. Potphode, P. Sivaraman, S. P. Mishra, and M. Patri, Polyaniline/partially exfoliated multi-walled carbon nanotubes based nanocomposites for supercapacitors, Electrochimica Acta, vol. 155, pp.402-410, 2/10/ (2015).

DOI: 10.1016/j.electacta.2014.12.126

Google Scholar

[12] H. Yang, N. Wang, Y. Ren, L. Cai, Z. Chen, and Q. Xu, Supercritical CO2-assisted preparation of 3D graphene-pyrrole/carbon nanotubes/polyaniline Nanoarchitectures for efficient supercapacitor electrodes, Materials Letters, vol. 139, pp.471-474, 1/15/ (2015).

DOI: 10.1016/j.matlet.2014.10.086

Google Scholar

[13] M. Fathi, M. Saghafi, F. Mahboubi, and S. Mohajerzadeh, Synthesis and electrochemical investigation of polyaniline/unzipped carbon nanotube composites as electrode material in supercapacitors, Synthetic Metals, vol. 198, pp.345-356, 12/ (2014).

DOI: 10.1016/j.synthmet.2014.10.033

Google Scholar

[14] D. Ge, L. Yang, L. Fan, C. Zhang, X. Xiao, Y. Gogotsi, et al., Foldable supercapacitors from triple networks of macroporous cellulose fibers, single-walled carbon nanotubes and polyaniline nanoribbons, Nano Energy, vol. 11, pp.568-578, 1/ (2015).

DOI: 10.1016/j.nanoen.2014.11.023

Google Scholar

[15] S. -Y. Lee, J. -I. Kim, and S. -J. Park, Activated carbon nanotubes/polyaniline composites as supercapacitor electrodes, Energy, vol. 78, pp.298-303, 12/15/ (2014).

DOI: 10.1016/j.energy.2014.10.011

Google Scholar

[16] Y. Sun, Y. Wang, and I. Zhitomirsky, Dispersing agents for electrophoretic deposition of TiO2 and TiO2–carbon nanotube composites, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 418, pp.131-138, 2/5/ (2013).

DOI: 10.1016/j.colsurfa.2012.11.030

Google Scholar

[17] Y. Su and I. Zhitomirsky, Electrophoretic deposition of graphene, carbon nanotubes and composite films using methyl violet dye as a dispersing agent, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 436, pp.97-103, 9/5/ (2013).

DOI: 10.1016/j.colsurfa.2013.06.024

Google Scholar

[18] M. S. Ata, Y. Sun, X. Li, and I. Zhitomirsky, Electrophoretic deposition of graphene, carbon nanotubes and composites using aluminon as charging and film forming agent, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 398, pp.9-16, 3/20/ (2012).

DOI: 10.1016/j.colsurfa.2012.02.001

Google Scholar

[19] H. Zhang, Y. Feng, S. Santhanagopalan, and D. D. Meng, Electrophoretic Deposition of Gallium with High Deposition Rate, Micromachines, vol. 6, pp.32-41, (2014).

DOI: 10.3390/mi6010032

Google Scholar

[20] H. Ma, L. Zhang, J. Zhang, L. Zhang, N. Yao, and B. Zhang, Electron field emission properties of carbon nanotubes-deposited flexible film, Applied Surface Science, vol. 251, pp.258-261, 9/15/ (2005).

DOI: 10.1016/j.apsusc.2005.03.100

Google Scholar

[21] J. Bandy, Q. Zhang, and G. Cao, Electrophoretic deposition of titanium oxide nanoparticle films for dye-sensitized solar cell applications, Materials Sciences and Applications, vol. 2, p.1427, (2011).

DOI: 10.4236/msa.2011.210193

Google Scholar

[22] P. M. Ajayan and J. M. Tour, Materials science: nanotube composites, Nature, vol. 447, pp.1066-1068, (2007).

Google Scholar

[23] C. L. Ngo, Q. T. Le, T. T. Ngo, D. N. Nguyen, and M. T. Vu, Surface modification and functionalization of carbon nanotube with some organic compounds, Advances in Natural Sciences: Nanoscience and Nanotechnology, vol. 4, p.035017, (2013).

DOI: 10.1088/2043-6262/4/3/035017

Google Scholar

[24] L. Wang, S. Feng, J. Zhao, J. Zheng, Z. Wang, L. Li, et al., A facile method to modify carbon nanotubes with nitro/amino groups, Applied Surface Science, vol. 256, pp.6060-6064, (2010).

DOI: 10.1016/j.apsusc.2010.03.120

Google Scholar

[25] F. Avilés, J. Cauich-Rodríguez, L. Moo-Tah, A. May-Pat, and R. Vargas-Coronado, Evaluation of mild acid oxidation treatments for MWCNT functionalization, Carbon, vol. 47, pp.2970-2975, (2009).

DOI: 10.1016/j.carbon.2009.06.044

Google Scholar

[26] P. Kar and A. Choudhury, Carboxylic acid functionalized multi-walled carbon nanotube doped polyaniline for chloroform sensors, Sensors and Actuators B: Chemical, vol. 183, pp.25-33, 7/5/ (2013).

DOI: 10.1016/j.snb.2013.03.093

Google Scholar

[27] X. Xie, L. Gao, and J. Sun, Thermodynamic study on aniline adsorption on chemical modified multi-walled carbon nanotubes, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 308, pp.54-59, (2007).

DOI: 10.1016/j.colsurfa.2007.05.028

Google Scholar

[28] W. Feng, X. Bai, Y. Lian, J. Liang, X. Wang, and K. Yoshino, Well-aligned polyaniline/carbon-nanotube composite films grown by in-situ aniline polymerization, Carbon, vol. 41, pp.1551-1557, (2003).

DOI: 10.1016/s0008-6223(03)00078-2

Google Scholar

[29] R. Yudianti, H. Onggo, Y. Saito, T. Iwata, and J. -i. Azuma, Analysis of functional group sited on multi-wall carbon nanotube surface, Open Materials Science Journal, vol. 5, pp.242-247, (2011).

DOI: 10.2174/1874088x01105010242

Google Scholar

[30] Y. -S. Chen, J. -H. Huang, and C. -C. Chuang, Glucose biosensor based on multiwalled carbon nanotubes grown directly on Si, Carbon, vol. 47, pp.3106-3112, 11/ (2009).

DOI: 10.1016/j.carbon.2009.07.029

Google Scholar

[31] J. E. Moreno Marcelino, E. Vigueras Santiago, G. Lopez-Tellez, and S. Hernández López, Chemical Functionalization of Carbon Nanotubes and its Effects on Electrical Conductivity, in Journal of Nano Research, 2014, pp.51-61.

DOI: 10.4028/www.scientific.net/jnanor.28.51

Google Scholar

[32] High Resolution XPS of Organic Polymers: The Scienta ESCA300 Database (Beamson, G.; Briggs, D. ), Journal of Chemical Education, vol. 70, p. A25, 1993/01/01 (1993).

DOI: 10.1021/ed070pa25.5

Google Scholar

[33] V. Datsyuk, M. Kalyva, K. Papagelis, J. Parthenios, D. Tasis, A. Siokou, et al., Chemical oxidation of multiwalled carbon nanotubes, Carbon, vol. 46, pp.833-840, 5/ (2008).

DOI: 10.1016/j.carbon.2008.02.012

Google Scholar

[34] M. Baibarac, I. Baltog, S. Lefrant, J. Mevellec, and O. Chauvet, Polyaniline and carbon nanotubes based composites containing whole units and fragments of nanotubes, Chemistry of Materials, vol. 15, pp.4149-4156, (2003).

DOI: 10.1021/cm021287x

Google Scholar

[35] P. Liu, W. Liu, and Q. Xue, In situ chemical oxidative graft polymerization of aniline from silica nanoparticles, Materials chemistry and physics, vol. 87, pp.109-113, (2004).

DOI: 10.1016/j.matchemphys.2004.05.001

Google Scholar

[36] H. Wang, A. Zhou, F. Peng, H. Yu, and J. Yang, Mechanism study on adsorption of acidified multiwalled carbon nanotubes to Pb(II), Journal of Colloid and Interface Science, vol. 316, pp.277-283, 12/15/ (2007).

DOI: 10.1016/j.jcis.2007.07.075

Google Scholar

[37] D. Shao, C. Chen, and X. Wang, Application of polyaniline and multiwalled carbon nanotube magnetic composites for removal of Pb(II), Chemical Engineering Journal, vol. 185–186, pp.144-150, 3/15/ (2012).

DOI: 10.1016/j.cej.2012.01.063

Google Scholar

[38] M. V. Kulkarni and B. B. Kale, Studies of conducting polyaniline (PANI) wrapped-multiwalled carbon nanotubes (MWCNTs) nanocomposite and its application for optical pH sensing, Sensors and Actuators B: Chemical, vol. 187, pp.407-412, 10/ (2013).

DOI: 10.1016/j.snb.2012.12.106

Google Scholar

[39] T. -M. Wu and Y. -W. Lin, Doped polyaniline/multi-walled carbon nanotube composites: Preparation, characterization and properties, Polymer, vol. 47, pp.3576-3582, 5/3/ (2006).

DOI: 10.1016/j.polymer.2006.03.060

Google Scholar