[1]
P. J. Burke, Lüttinger Liquid Theory as a Model of the Gigahertz Electrical Properties of Carbon Nanotubes, IEEE Transaction on Nanotechnology, 1 (2002) 129-144.
DOI: 10.1109/tnano.2002.806823
Google Scholar
[2]
P. J. Burke, Correction to Lüttinger Liquid Theory as a Model of the Gigahertz Electrical Properties of Carbon Nanotubes, IEEE Transaction on Nanotechnology, 3(2004) 331.
DOI: 10.1109/tnano.2004.828580
Google Scholar
[3]
P. J. Burke, An RF Circuit Model for Carbon Nanotubes, IEEE Transaction on Nanotechnology, 2 (2003) 55-58.
Google Scholar
[4]
P. J. Burke, Correction to an RF Circuit Model for Carbon Nanotubes, IEEE Transaction on Nanotechnology, 3 (2004) 331.
Google Scholar
[5]
P. Burke, S. Li & Z. Yu, Quantitative Theory of Nanowire and Nanotube Antenna Performance, IEEE Transaction on Nanotechnology, 5 (2006) 314-334.
DOI: 10.1109/tnano.2006.877430
Google Scholar
[6]
G. W. Hanson, Fundamental Transmitting Properties of Carbon Nanotube Antennas, IEEE Transactions on Antenna and Propagation, 53 (2005) 3426-3435.
DOI: 10.1109/tap.2005.858865
Google Scholar
[7]
G. W. Hanson & Jin Hao, Infrared and Optical Properties of Carbon Nanotube Dipole Antennas, IEEE Transaction on Nanotechnology, 5 (2006) 766-775.
DOI: 10.1109/tnano.2006.883475
Google Scholar
[8]
G. W. Hanson, Current on an Infinitely-Long Carbon Nanotube Antenna Excited by a Gap Generator, IEEE Transaction on Antennas and Propagation, 54 (2006) 76-81.
DOI: 10.1109/tap.2005.861550
Google Scholar
[9]
M. S. Sarto, A. Tamburrano, and M. D'Amore, "New electron-waveguide- based modeling for carbon nanotube interconnects, IEEE Transaction on Nanotechnology, 8 (2009) 214–225.
DOI: 10.1109/tnano.2008.2010253
Google Scholar
[10]
M.S. Sarto, A. Tamburrano, Multiconductor transmission line modeling of SWCNT bundles in common-mode excitation, IEEE International Symposium on Electromagnetic Compatibility, 2 (2006) 466-471.
DOI: 10.1109/isemc.2006.1706349
Google Scholar
[11]
Maria Sabrina Sarto, and Alessio Tamburrano, Electromagnetic Analysis of Radio-Frequency Signal Propagation along SWCN Bundles, 6th IEEE Conference on Nanotechnology, (2006) 201–204.
DOI: 10.1109/nano.2006.1717057
Google Scholar
[12]
M. D'Amore, M.S. Sarto, A. Tamburrano, Signal Integrity of Carbon Nanotube Bundles, IEEE International Symposium on Electromagnetic Compatibility, (2007) 1-6.
DOI: 10.1109/isemc.2007.22
Google Scholar
[13]
M. D'Amore, M. Ricci, and A. Tamburrano, Equivalent Single Conductor Modeling of Carbon Nanotube Bundles for Transient Analysis of High-Speed Interconnects, 8th IEEE Conference on Nanotechnology, Arlington, Texas, (2008), 307-310.
DOI: 10.1109/nano.2008.98
Google Scholar
[14]
M. D'Amore, Maria Sabrina Sarto, and Alessandro G. D'Aloia, Equivalent Single Conductor for Modeling Near Field Radiated Emission of Carbon Nanotube Bundles, 9th IEEE Conference on Nanotechnology, Genoa, (2009) 75–78.
Google Scholar
[15]
Marcello D'Amore, Alessandro Giuseppe D'Aloia, Maria Sabrina Sarto, and Alessio Tamburrano, Near Field Radiated From Carbon Nanotube Bundles, IEEE Transactions on Electromagnetic Compatibility, 54 (2012) 998-1005.
DOI: 10.1109/temc.2012.2196045
Google Scholar
[16]
Q. Libo, Zhu Zhangming, D. Ruixue, and Y. Yintang, Circuit modeling and performance analysis of SWCNT bundle 3D interconnects, Journal of Semiconductors, 34 (2013) 095014, 1–095014, 7.
DOI: 10.1088/1674-4926/34/9/095014
Google Scholar
[17]
M. D'Amore, F. Maradei, and S. Cruciani, M. Feliziani, High Frequency Performance of Carbon Nanotube-Based Spiral Inductors, Conference of International Symposium on Electromagnetic Compatibility (EMC Europe), Brugge, Belgium, (2013) 765-770.
DOI: 10.1109/emceurope51680.2022.9901053
Google Scholar
[18]
Yi Huang and Wen-Yan Yin, Performance Predication of Carbon Nanotube Bundle Dipole Antenna, Proceedings of Asia-Pacific Microwave Conference, (2007) 1-4.
DOI: 10.1109/apmc.2007.4554987
Google Scholar
[19]
Y. Huang, W. -Y. Yin, and Q. Huo Liu, Performance Prediction of Carbon Nanotube Bundle Dipole Antennas, IEEE Transactions on Nanotechnology, 7 (2008) 331-337.
DOI: 10.1109/tnano.2007.915017
Google Scholar
[20]
Yue Wang, Yu Ming Wu, Lei Lei Zhuang, Shao Qing Zhang, Le Wei Li, and Qun Wu, Electromagnetic Performance of Single Walled Carbon Nanotube Bundles, Microwave Conference, Asia Pacific, (2009) 190-193.
DOI: 10.1109/apmc.2008.4958448
Google Scholar
[21]
A. M Attiya, Lower Frequency Limit of Carbon Nanotube Antenna, PIER, 94 (2009) 419-433.
DOI: 10.2528/pier09062001
Google Scholar
[22]
S. Choi and K. Sarabandi, Performance Assessment of Bundled Carbon Nanotube for Antenna Applications at Terahertz Frequencies and Higher, IEEE Transactions on Antennas and Propagation, 59 (2011) 802-809.
DOI: 10.1109/tap.2010.2103023
Google Scholar
[23]
G.W. Hanson and Jay A. Berres, Multiwall Carbon Nanotubes at RF-THz Frequencies: Scattering, Shielding, Effective Conductivity and Power Dissipation, IEEE Transactions on Antenna and Propagation, 59 (2011) 3098-3103.
DOI: 10.1109/tap.2011.2158951
Google Scholar
[24]
Sophocles J. Orfanidis, Maxwell's Equations, Chapter 1, Electromagnetic Waves and Antennas, (2010).
Google Scholar
[25]
G. W. Hanson, A Common Electromagnetic Framework for Carbon Nanotubes and Solid Nanowires-Spatially Distributed Impedance, and Transmission Line Model, IEEE Transaction on Microwave Theory and Techniques, 59 (2011) 9-20.
DOI: 10.1109/tmtt.2010.2090693
Google Scholar