Modelling and Simulation of Rectangular Bundle of Single-Walled Carbon Nanotubes for Antenna Applications

Article Preview

Abstract:

This paper aims to present an effective electromagnetic (EM) modelling approach for rectangular bundle of single-walled carbon nanotubes (RB-SWCNTs), based on the electrical conductivity, relative complex permittivity and linear distribution impedance by applying General Ohm’s law for this bundle. The equivalent single conductor material (ESCM) model for personification the RB-SWCNTs is present in this paper. The main target of this modeling approach is to estimate and investigate the EM properties of RB-SWCNTs using common EM engineering tool solver CST (MWS). For this purpose, the RB-SWCNTs and ESCM dipole antennas will be designed and implemented using CST (MWS). The equivalent conductivity model, relative complex permittivity and other parameters of the RB-SWCNTs will be derived in this paper and considered as an equivalent material parameters for the ESCM. This modeling technique is expected to provide new avenues for designing different antenna structures.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

57-66

Citation:

Online since:

July 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. J. Burke, Lüttinger Liquid Theory as a Model of the Gigahertz Electrical Properties of Carbon Nanotubes, IEEE Transaction on Nanotechnology, 1 (2002) 129-144.

DOI: 10.1109/tnano.2002.806823

Google Scholar

[2] P. J. Burke, Correction to Lüttinger Liquid Theory as a Model of the Gigahertz Electrical Properties of Carbon Nanotubes, IEEE Transaction on Nanotechnology, 3(2004) 331.

DOI: 10.1109/tnano.2004.828580

Google Scholar

[3] P. J. Burke, An RF Circuit Model for Carbon Nanotubes, IEEE Transaction on Nanotechnology, 2 (2003) 55-58.

Google Scholar

[4] P. J. Burke, Correction to an RF Circuit Model for Carbon Nanotubes, IEEE Transaction on Nanotechnology, 3 (2004) 331.

Google Scholar

[5] P. Burke, S. Li & Z. Yu, Quantitative Theory of Nanowire and Nanotube Antenna Performance, IEEE Transaction on Nanotechnology, 5 (2006) 314-334.

DOI: 10.1109/tnano.2006.877430

Google Scholar

[6] G. W. Hanson, Fundamental Transmitting Properties of Carbon Nanotube Antennas, IEEE Transactions on Antenna and Propagation, 53 (2005) 3426-3435.

DOI: 10.1109/tap.2005.858865

Google Scholar

[7] G. W. Hanson & Jin Hao, Infrared and Optical Properties of Carbon Nanotube Dipole Antennas, IEEE Transaction on Nanotechnology, 5 (2006) 766-775.

DOI: 10.1109/tnano.2006.883475

Google Scholar

[8] G. W. Hanson, Current on an Infinitely-Long Carbon Nanotube Antenna Excited by a Gap Generator, IEEE Transaction on Antennas and Propagation, 54 (2006) 76-81.

DOI: 10.1109/tap.2005.861550

Google Scholar

[9] M. S. Sarto, A. Tamburrano, and M. D'Amore, "New electron-waveguide- based modeling for carbon nanotube interconnects, IEEE Transaction on Nanotechnology, 8 (2009) 214–225.

DOI: 10.1109/tnano.2008.2010253

Google Scholar

[10] M.S. Sarto, A. Tamburrano, Multiconductor transmission line modeling of SWCNT bundles in common-mode excitation, IEEE International Symposium on Electromagnetic Compatibility, 2 (2006) 466-471.

DOI: 10.1109/isemc.2006.1706349

Google Scholar

[11] Maria Sabrina Sarto, and Alessio Tamburrano, Electromagnetic Analysis of Radio-Frequency Signal Propagation along SWCN Bundles, 6th IEEE Conference on Nanotechnology, (2006) 201–204.

DOI: 10.1109/nano.2006.1717057

Google Scholar

[12] M. D'Amore, M.S. Sarto, A. Tamburrano, Signal Integrity of Carbon Nanotube Bundles, IEEE International Symposium on Electromagnetic Compatibility, (2007) 1-6.

DOI: 10.1109/isemc.2007.22

Google Scholar

[13] M. D'Amore, M. Ricci, and A. Tamburrano, Equivalent Single Conductor Modeling of Carbon Nanotube Bundles for Transient Analysis of High-Speed Interconnects, 8th IEEE Conference on Nanotechnology, Arlington, Texas, (2008), 307-310.

DOI: 10.1109/nano.2008.98

Google Scholar

[14] M. D'Amore, Maria Sabrina Sarto, and Alessandro G. D'Aloia, Equivalent Single Conductor for Modeling Near Field Radiated Emission of Carbon Nanotube Bundles, 9th IEEE Conference on Nanotechnology, Genoa, (2009) 75–78.

Google Scholar

[15] Marcello D'Amore, Alessandro Giuseppe D'Aloia, Maria Sabrina Sarto, and Alessio Tamburrano, Near Field Radiated From Carbon Nanotube Bundles, IEEE Transactions on Electromagnetic Compatibility, 54 (2012) 998-1005.

DOI: 10.1109/temc.2012.2196045

Google Scholar

[16] Q. Libo, Zhu Zhangming, D. Ruixue, and Y. Yintang, Circuit modeling and performance analysis of SWCNT bundle 3D interconnects, Journal of Semiconductors, 34 (2013) 095014, 1–095014, 7.

DOI: 10.1088/1674-4926/34/9/095014

Google Scholar

[17] M. D'Amore, F. Maradei, and S. Cruciani, M. Feliziani, High Frequency Performance of Carbon Nanotube-Based Spiral Inductors, Conference of International Symposium on Electromagnetic Compatibility (EMC Europe), Brugge, Belgium, (2013) 765-770.

DOI: 10.1109/emceurope51680.2022.9901053

Google Scholar

[18] Yi Huang and Wen-Yan Yin, Performance Predication of Carbon Nanotube Bundle Dipole Antenna, Proceedings of Asia-Pacific Microwave Conference, (2007) 1-4.

DOI: 10.1109/apmc.2007.4554987

Google Scholar

[19] Y. Huang, W. -Y. Yin, and Q. Huo Liu, Performance Prediction of Carbon Nanotube Bundle Dipole Antennas, IEEE Transactions on Nanotechnology, 7 (2008) 331-337.

DOI: 10.1109/tnano.2007.915017

Google Scholar

[20] Yue Wang, Yu Ming Wu, Lei Lei Zhuang, Shao Qing Zhang, Le Wei Li, and Qun Wu, Electromagnetic Performance of Single Walled Carbon Nanotube Bundles, Microwave Conference, Asia Pacific, (2009) 190-193.

DOI: 10.1109/apmc.2008.4958448

Google Scholar

[21] A. M Attiya, Lower Frequency Limit of Carbon Nanotube Antenna, PIER, 94 (2009) 419-433.

DOI: 10.2528/pier09062001

Google Scholar

[22] S. Choi and K. Sarabandi, Performance Assessment of Bundled Carbon Nanotube for Antenna Applications at Terahertz Frequencies and Higher, IEEE Transactions on Antennas and Propagation, 59 (2011) 802-809.

DOI: 10.1109/tap.2010.2103023

Google Scholar

[23] G.W. Hanson and Jay A. Berres, Multiwall Carbon Nanotubes at RF-THz Frequencies: Scattering, Shielding, Effective Conductivity and Power Dissipation, IEEE Transactions on Antenna and Propagation, 59 (2011) 3098-3103.

DOI: 10.1109/tap.2011.2158951

Google Scholar

[24] Sophocles J. Orfanidis, Maxwell's Equations, Chapter 1, Electromagnetic Waves and Antennas, (2010).

Google Scholar

[25] G. W. Hanson, A Common Electromagnetic Framework for Carbon Nanotubes and Solid Nanowires-Spatially Distributed Impedance, and Transmission Line Model, IEEE Transaction on Microwave Theory and Techniques, 59 (2011) 9-20.

DOI: 10.1109/tmtt.2010.2090693

Google Scholar