Characterization of Stoichiometric ZrO2 Thin Film on Si by Angle-Resolved X-Ray Photoelectron Spectroscopy

Article Preview

Abstract:

Simultaneous thermal oxidation and nitridation technique was utilized to transform sputtered Zr to stoichiometric ZrO2 thin films on Si substrate. The stoichiometry of this type of oxide has high dielectric constant value of ~25 may be applied as dielectric in metal-oxide-semiconductor-based power devices. Through nitrous oxide gas environment, the oxidation/nitridation process was performed at 700°C for a set of time of 5–20 min. Chemical properties of the fabricated films have been characterized by angle-resolved x-ray photoelectron spectrometer. From the characterization, it was found that stoichiometric Zr-O (ZrO2) was formed. Nitrogen content in the samples was investigated. It was identified that sample oxidized/nitrided for 15 min gives the highest atomic percentage of nitrogen of 2.64 at% in the interfacial layer. This nitrogen content in the near interface region may help to passivate the Si dangling bonds, which may thus enhance the interface quality of oxide-semiconductor.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

77-82

Citation:

Online since:

July 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. D. Wilk, R. M. Wallace and J. M. Anthony: J. Appl. Phys., 2001, 89, 5243.

Google Scholar

[2] J. Robertson: Eur. Phys. J. Appl. Phys., 2004, 28, 265.

Google Scholar

[3] Y. H. Wong and K. Y. Cheong: ZrO2 thin films on Si substrate, J. Mater. Sci.: Mater. Electron., 2010, 21, 980.

DOI: 10.1007/s10854-010-0144-5

Google Scholar

[4] I. Jõgi, K. Kukli, M. Ritala, M. Leskelä, J. Aarik, A. Aidla and J. Lu: Atomic layer deposition of high capacitance density Ta2O5–ZrO2 based dielectrics for metal–insulator–metal structures, Microelectron. Eng., 2010, 87, 144.

DOI: 10.1016/j.mee.2009.06.032

Google Scholar

[5] L. -Z. Hsieh, H. -H. Ko, P. -Y. Kuei and C. -Y. Lee: Jpn. J. Appl. Phys., 2006, 45, 7680.

Google Scholar

[6] H. D. Kim, S. W. Jeong, M. T. You and Y. Roh: Thin Solid Films, 2006, 515, 522.

Google Scholar

[7] Y. Nagasato, T. Aya, Y. Iwazaki, M. Hasumi, T. Ueno and K. Kuroiwa: Jpn. J. Appl. Phys., 2005, 44, 5.

Google Scholar

[8] R. M. C. de Almeida and I. J. R. Baumvol: Surf. Sci. Rep., 2003, 49, 1.

Google Scholar

[9] S. A. Campbell and R. C. Smith: in High-k Gate Dielectrics, (ed. M. Houssa), 65-88; 2004, Institute of Physics.

Google Scholar

[10] L. -M. Chen, Y. -S. Lai and J. S. Chen: Thin Solid Films, 2007, 515, 3724.

Google Scholar

[11] H. Ishii, A. Nakajima and S. Yokoyama: J. Appl. Phys., 2004, 95, 536.

Google Scholar

[12] M. Koyama, K. Suguro, M. Yoshiki, Y. Kamimuta, M. Koike, M. Ohse, C. Hongo and A. Nishiyama, IEDM, 2001, 459.

Google Scholar

[13] Y. Enta, K. Suto, S. Takeda, H. Kato and Y. Sakisaka: Thin Solid Films, 2006, 500, 129.

DOI: 10.1016/j.tsf.2005.11.058

Google Scholar

[14] Y. H. Wong and K. Y. Cheong: Thermal oxidation and nitridation of sputtered Zr thin film on Si via N2O gas, J. Alloys Compd., 2011, 509, 8728.

DOI: 10.1016/j.jallcom.2011.06.041

Google Scholar

[15] Y. H. Wong and K. Y. Cheong: Electrical characteristics of oxidized/nitrided Zr thin film on Si, J. Electrochem. Soc., 2011, 158, H1270.

DOI: 10.1149/2.106112jes

Google Scholar

[16] Y. H. Wong and K. Y. Cheong: Band alignment and enhanced breakdown field of simultaneously oxidized and nitrided Zr film on Si, Nano. Res. Lett., 2011, 6, 489.

DOI: 10.1186/1556-276x-6-489

Google Scholar

[17] J. -H. Huang, T. -H. Wu and G. -P. Yu: Surf. Coat. Technol., 2009, 203, 3491.

Google Scholar

[18] A. Rizzo, M. A. Signore, L. Mirenghi and D. Dimaio: Thin Solid Films, 2006, 515, 1486.

DOI: 10.1016/j.tsf.2006.04.012

Google Scholar

[19] K. Y. Cheong, J. Moon, H. J. Kim, W. Bahng and N. -K. Kim: Metal-oxide-semiconductor characteristics of thermally grown nitrided SiO2 thin film on 4H-SiC in various N2O ambient, Thin Solid Films, 2010, 518, 3255.

DOI: 10.1016/j.tsf.2009.11.003

Google Scholar

[20] Y. Leng: Materials Characterization: Introduction to Microscopic and Spectroscopic Methods,; 2008, Wiley, Singapore.

Google Scholar

[21] C. D. Wagner, W. M. Riggs, L. E. Davis, J. F. Moulder and G. E. Muilenberg: Handbook of X-ray Photoelectron Spectroscopy: A Reference Book of Standard Data for Use in X-ray Photoelectron Spectroscopy,; 1979, Physical Electronics Division, Perkin-Elmer Corp., Minnesota.

DOI: 10.1002/sia.740030412

Google Scholar

[22] J. Koo, Y. Kim and H. Jeon: Jpn. J. Appl. Phys., 2002, 41, 3043.

Google Scholar

[23] T. L. Barr: Modern ESCA: The Principles and Practice of X-ray Photoelectron Spectroscopy,; 1994, CRC Press.

Google Scholar

[24] M. Matsuoka, S. Isotani, J. F. D. Chubaci, S. Miyake, Y. Setsuhara, K. Ogata and N. Kuratani: J. Appl. Phys., 2000, 88, 3773.

Google Scholar

[25] H. W. Chen, T. Y. Huang, D. Landheer, X. Wu, S. Moisa, G. I. Sproule and T. S. Chao: J. Electrochem. Soc., 2002, 149, F49.

Google Scholar

[26] M. K. Bera, S. Chakraborty, S. Saha, D. Paramanik, S. Varma, S. Bhattacharya and C. K. Maiti: Thin Solid Films, 2006, 504, 183.

DOI: 10.1016/j.tsf.2005.09.083

Google Scholar