In Vitro Bioactivity and Physical-Mechanical Properties of HA Based 45S5 Bio-Composites

Article Preview

Abstract:

Bio-glass® and hydroxyapatite (Ca10 (PO4)6(OH) 2, HA) has been widely used as a bone replacement material in restorative dental and orthopedic implants. In order to analyze in vitro bioactivity bio-composite before and after exposed to simulated body fluid (SBF) solution for different time periods were investigated by fourier transform infrared (FTIR) reflectance spectrometer with measuring the pH and concentration of silicon, sodium, calcium, phosphorus and manganese ions in SBF solution. The prepared bio-composites were assessed by XRD, FTIR, mechanical properties. FTIR confirmed the presence of a rich bone like apatite layer post-immersion on the composite surface. It has been found that the new BG/HA bio-composite materials have high bioactivity properties. These bio-composite materials are promising for medical applications such as bone substitutes.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

83-90

Citation:

Online since:

July 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. L. Hench, R. J. Splinter, W. C. Allen, T. K. Greenlee, Bonding mechanisms at the interface of ceramic prosthetic materials. J. Biomed. Mater. Res. 5 (1971), p.117–141.

DOI: 10.1002/jbm.820050611

Google Scholar

[2] L. L. Hench, H. A. Paschall, Direct chemical bond of bioactive glass-ceramic materials to bone and muscle. J. Biomed. Mater. Res. 7 (1973), p.25–42.

DOI: 10.1002/jbm.820070304

Google Scholar

[3] J. Wilson, G. H. Pigott, F. J. Schoen, L. L. Hench, Toxicology and biocompatibility of bioglasses. J. Biomed. Mater. Res. 15 (1981), p.805– 817.

DOI: 10.1002/jbm.820150605

Google Scholar

[4] Stefan Romeisa , Alexander Hoppeb , Rainer Detschb , Aldo R. Boccaccinib , Jochen Schmidta , and Wolfgang Peukerta. Top-down processing of submicron 45S5 Bioglass® for enhanced in vitro bioactivity and biocompatibility. Procedia Engineering 2015; 102: 534–541.

DOI: 10.1016/j.proeng.2015.01.116

Google Scholar

[5] Hench LL. Bioceramics. J Am Ceram Soc 1998; 81: 1705–28.

Google Scholar

[6] Ebaretonbofa E and Evans. J G J. Porous mater 2002; 257-9.

Google Scholar

[7] Elliott JC, Mackie PE, Young RA. Monoclinic hydroxyapatite. Science 1973; 180: 1055–7.

Google Scholar

[8] De Groot K, Klein CPAT, Wolke JGC, De Blieck-Hogervorst JMA. Chemistry of calcium phosphate bioceramics. In: Yamamuro T, Hench LL, Wilson J, editors. Handbook of bioactive ceramics, vol. II. Boca Raton, FL: CRC Press, 1990. p.3–16.

DOI: 10.1002/jbm.820250709

Google Scholar

[9] Jarcho M. Calcium phosphate ceramics as hard tissue prosthetics. Clin Orthop Relat Res 1981; 157: 259–78.

Google Scholar

[10] Hench LL, Wilson J. Surface-active biomaterials. Science 1984; 226: 630–6.

Google Scholar

[11] Ruys AJ, Brandwood A, Milthorpe BK, Dickson MR, Zeigler KA, Sorrell CC. The effect of sintering atmosphere on the chemical compatibility of hydroxyapatite and particulate additives at 12001C. J Mater Sci: Mater Med 1995; 6: 297–301.

DOI: 10.1007/bf00120274

Google Scholar

[12] F.J. Garcı´a-Sanz, M.B. Mayor, J.L. Arias, J. Pou, B. Leo´ n,M. Pe´rez-Amor, Hydroxyapatite coatings: a comparative study between plasma-spray and pulsed laser deposition techniques, Journal of Material Science: Materials in Medicine 1997; 8: 861–865.

DOI: 10.1023/a:1018549720873

Google Scholar

[13] R. Halouani, D. Bernache-Asolant, E. Champion, A. Ababou, Microstructure and related mechanical properties of hot pressed hydroxyapatite ceramics, Journal of Material Science: Materials in Medicine 1994; 5: 563–568.

DOI: 10.1007/bf00124890

Google Scholar

[14] Healy KE, Ducheyne P. The mechanisms of passive dissolution of titanium in a model physiological environment. J Biomed Mater Res 1992; 26: 319–38.

DOI: 10.1002/jbm.820260305

Google Scholar

[15] Long M, Rack HJ. Titanium alloys in total joint replacementFa materials science perspective. Biomaterials 1998; 19: 1621–39.

DOI: 10.1016/s0142-9612(97)00146-4

Google Scholar

[16] Nanci A, Wuest JD, Peru L, Brunet P, Sharma V, Zalzal S, McKee MD. Chemical modification of titanium surfaces for covalent attachment of biological molecules. J Biomed Mater Res 1998; 40: 324–35.

DOI: 10.1002/(sici)1097-4636(199805)40:2<324::aid-jbm18>3.0.co;2-l

Google Scholar

[17] Albrektsson T, Hansson HA. An ultrastructural characterization of the interface between bone and sputtered titanium or stainless steel surfaces. Biomaterials 1986; 7: 201–5.

DOI: 10.1016/0142-9612(86)90103-1

Google Scholar

[18] K P Santosh, Min-Cheol Chu, A Balakrishnan, T N Kim and Seong-Jai Cho. Preparation and characterization of nano-hydroxyapatite powder using sol-gel technique. Bull Mater. Sci. October2009; Vol. 32 No. 5: 465-470.

DOI: 10.1007/s12034-009-0069-x

Google Scholar

[19] Kokubo T, Takadama H, Biomaterials 2006; 27: 2907–15.

Google Scholar

[20] A.J. Salinas, A.I. Martin, M. Vallet-Regi, Bioactivity of three CaO–P2O5–SiO2 sol–gel glasses, J. Biomed. Mater. Res. 61 (2002) 524–532.

DOI: 10.1002/jbm.10229

Google Scholar

[21] P.N. De Aza, J.M. Ferna´ndez-Pradas, P. Serra, In vitro bioactivity of laser ablation pseudowollastonite coating, Biomaterials 25 (2004) 1983–(1990).

DOI: 10.1016/j.biomaterials.2003.08.036

Google Scholar

[22] C. Sarmento, Z.B. Luklinska, L. Brown, M. Anseau, P.N. De Aza, S. De Aza, F.J. Hughes I.J. McKay, In vitro behavior of osteoblastic cells cultured in the presence of pseudowollastonite ceramic, J. Biomed. Mater. Res. 69A (2004) 351–358.

DOI: 10.1002/jbm.a.30012

Google Scholar

[23] P.N. De Aza, Z.B. Luklinska, Martinez, M.R. Anseau, F. Guitian, S. De Aza, Morphological and structural study of pseudowollastonite implants in bone, J. Microsc. 197 (2000) 60–67.

DOI: 10.1046/j.1365-2818.2000.00647.x

Google Scholar

[24] P.N. De Aza, Z.B. Luklinska, M.R. Anseau, F. Guitian, S. De Aza, Bioactivity of pseudowollastonite in human saliva, J. Dent. 27 (1999) 107–113.

DOI: 10.1016/s0300-5712(98)00029-3

Google Scholar

[25] M.A. Lopes, J.D. Santos, F.J. Monteiro, J.C. Knowles, Glass-reinforced hydroxyapatite: a comprehensive study of the effect of glass composition on the crystallography of the composite, J. Biomed. Mater. Res. 39 (1998) 244–251.

DOI: 10.1002/(sici)1097-4636(199802)39:2<244::aid-jbm11>3.0.co;2-d

Google Scholar

[26] F. Moztarzadeh, Electrical conductivity of Y2O3 stabilized zirconia, Ceram. Int. 14 (1988) 27–30.

DOI: 10.1016/0272-8842(88)90014-4

Google Scholar

[27] Marta Cerrutia, David Greenspanb, Kevin Powers, Biomaterials 26 (2005) 1665–1674.

Google Scholar

[28] Delia S. Brauer, Natalia Karpukhina, Matthew D. O'Donnell, Robert V. Law, Robert G. Hill, Fluoride-containing bioactive glasses: Effect of glass design and structure on degradation, pH and apatite formation in simulated body fluid. Acta Biomaterialia 6 (2010).

DOI: 10.1016/j.actbio.2010.01.043

Google Scholar

[29] V.R. Mastelaro, E.D. Zanotto N. Lequeux, RCortes, J. Non-Cryst. Solids 262 (2000) 191–199.

Google Scholar

[30] P. Ducheyne, Q. Qiu, Biomaterials 20 (1999) 2287 – 2303.

Google Scholar