Investigation of Optical Properties in Sn, Sb, Pb and Bi Doped Silica Glasses Aiming Visible Fiber Laser

Article Preview

Abstract:

Emission spectra of Sn, Sb, Pb and Bi doped silica glasses co-doped with Al and P prepared by modified chemical vapor-phase deposition (MCVD) using solution doping technique are presented. Bi doped silica glasses present emission/excitation (Em/Ex) bands around 470/(330, 220nm) 600/(470, 350, 270nm), 730 and 830/(820, 420, 380, 250nm), with the intensity ratio of these bands depends on the composition, indicating that different emission sources (valence states or defects) are present together. The Em/Ex of Sb doped silica glasses also depend on composition, and are similar of Bi doped silica glasses. The lifetime at 830 and 1400 in Bi or Sb doped silica glasses are similar and around 60 and 850μs, respectively. The lifetime around 600nm was 3.2 and 11μs, respectively to Bi and Sb doped silica glasses. The Sn doped silica glass present Em/Ex bands around 305/265nm, 400/(270, 340nm) and 430/280nm. The Pb doped silica glass present Em/Ex around 370/290nm and 540/320nm. No significant change in the emission bands in the visible range are observed when the Sn or Pb doped silica glass are co-doped with Al or P. The present results of Em/Ex suggest that Bi and Sb can be candidate for fiber lasing in visible range (around 600nm) using the available LD pumping (ex: 405nm). Despite Sn and Pb doping shows strong emission around 400nm, unfortunately until now there is no LD that can be used as pumping source.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

91-95

Citation:

Online since:

July 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E. M. Dianov, V. V. Dvoyrin, V. M. Mashinksy, V. M. Umnikov, M. V. Yashkov, A. N. Gur'yanov, CW bismuth fibre laser Quant. Elec. 35 (2005) 1083-1084.

DOI: 10.1070/qe2005v035n12abeh013092

Google Scholar

[2] W. Xu, M. Peng, Z. Ma, G. Dong, J. Qiu, A new study on bismuth doped oxide glasses, Opt. Exp. 20 (2012) 15692-15702.

DOI: 10.1364/oe.20.015692

Google Scholar

[3] X. Jiang, L. Su, P. Yu, H. Tang, X. Xu, L. Zheng, H. Li, J. Xu, Broadband photoluminescence of Bi2O3-GeO2 binary systems: glass, glass-ceramics and crystals, Laser Phys. 23 (2013) 105812-25.

DOI: 10.1088/1054-660x/23/10/105812

Google Scholar

[4] Y. Fujimoto, M. Nakatsuka, Infrared luminescence from bismuth-doped silica glass, Jpn. J. Appl. Phys. 40 (2001) L279-L281.

DOI: 10.1143/jjap.40.l279

Google Scholar

[5] H. T. Sun, J. Zhou, J. Qiu, Recent advances in bismuth activated photonic materials, Prog. Mat. Sci. 64 (2014) 1-72.

Google Scholar

[6] V. O. Sokolov, V. G. Plotnichenko, E. M. Dianov, The origin of near-IR luminescence in bismuth-doped silica and germania glasses free of other dopants: First-principle study, Opt. Mat. Exp. 3 (2013) 1059-1074.

DOI: 10.1364/ome.3.001059

Google Scholar

[7] V. O. Sokolov, V. G. Plotnichenko, E. M. Dianov, Origin of near-IR luminescence in Bi2O3-GeO2 and Bi2O3-SiO2 glasses: first-principle study, Opt. Mat. Exp. 5 (2015) 163-168.

DOI: 10.1364/ome.5.000163

Google Scholar

[8] M. Y. Sharonov, A. B. Bykov, V. Petricevic, R. R. Alfano, Spectroscopic study of optical centers formed in Bi-, Pb-, Sn-, Te, and In-doped germanate glasses, Opt. Let. 33 (2008) 2131-2133.

DOI: 10.1364/ol.33.002131

Google Scholar

[9] A. S. Zlenko, S. V. Firstov, K. E. Riumkin, V. F. Khopin, L. D. Iskhakova, S. L. Semjonov, I. A. Bufetov, E. M. Dianov, Optical properties of IR-emitting centres in Pb-doped silica fibres, Quantum Electronics 42 (2012) 310-314.

DOI: 10.1070/qe2012v042n04abeh014816

Google Scholar

[10] B. I. Denker, B. I. Galagan, L. D. Iskhakova, S. E. Sverchkov, E. M. Dianov, Infrared luminescent properties of tin-silicate oxide glass, Appl. Phys. B 120 (2015) 13-15.

DOI: 10.1007/s00340-015-6146-5

Google Scholar

[11] L. Skuja, Isoelectronic series of twofold coordinated Si, Ge, and Sn atoms in glassy SiO2: a luminescence study, J. Non-Cryst. Sol. 149 (1992) 77-95.

DOI: 10.1016/0022-3093(92)90056-p

Google Scholar

[12] A. N. Trukhin, Localized states in wide-gap glasses. Comparison with relevant crystals, J. Non-Cryst. Sol. 189 (1995) 1-15.

DOI: 10.1016/0022-3093(95)00207-3

Google Scholar

[13] M. Neff, V. Romano, W. Lüthy, Broadband fluorescence of Sb3+-doped silica fibres, Opt. Mat. 33 (2010) 1-3.

DOI: 10.1016/j.optmat.2010.07.003

Google Scholar

[14] A. F. Zatsepin, I. S. Zhidkov, A. I. Kukharenko, D. A. Zatsepin, M. P. Andronov, S. O. Cholakh, An intrinsic luminescence in binary lead silicate glasses, Opt. Mat. 34 (2012) 807-811.

DOI: 10.1016/j.optmat.2011.11.012

Google Scholar

[15] A. F. Zatsepin, H. -J. Fitting, E. A. Buntov, V. A. Pustovarov, B. Schmidt, Defects and localized states in silica layers implanted with lead ions, J. Lumin. 154 (2014) 425-429.

DOI: 10.1016/j.jlumin.2014.05.031

Google Scholar

[16] S. E. Paje, M. A. García, M. A. Villegas, J. Llopis, Optical properties of silver ion-exchanged antimony doped glass, J. Non-Cryst. Sol. 278 (2000) 128-136.

DOI: 10.1016/s0022-3093(00)00332-x

Google Scholar

[17] D. L. Griscom, E. J. Friebele, K. J. Long, J. W. Fleming, Fundamental defect centers in glass: Electron spin resonance and optical absorption studies of irradiated phosphorus‐doped silica glass and optical fibers, J. Appl. Phys. 54 (1983).

DOI: 10.1063/1.332591

Google Scholar