The Influence of Cu Content on the Mechanical Properties of Copper-Borate Glasses

Article Preview

Abstract:

We report on the mechanical properties of xCuO-(50-x)PbO-50B2O3 (x from 0 to 30 mol%) copper-lead-borate glasses. Their mechanical properties were investigated by the mechanical resonance technique and by the indentation measurement. The replacement of lead by copper improves the packing efficiency, and enhances the elastic moduli, hardness and the fracture toughness of glasses.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

71-76

Citation:

Online since:

July 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Duran, J. Jurado, J.F. Navarro, Electrical properties of copper phosphate glasses I. DC electrical behavior, J. Non-Cryst. Solids 79 (3) (1986) 333-351.

DOI: 10.1016/0022-3093(86)90232-2

Google Scholar

[2] I. Kashif, A. Ratep, A.M. Sanad, Optical properties of lithium lead borate glass containing copper oxide for color filter and absorption glass, Opt. Quant. Electron. 47 (2015) 673-684.

DOI: 10.1007/s11082-014-9943-x

Google Scholar

[3] P.S. Rani, R. Singh, Electrical and magnetic properties of copper tellurite glasses, J. Mater. Sci. 45 (11) (2010) 2868-2873.

DOI: 10.1007/s10853-010-4276-z

Google Scholar

[4] H. Doweidar, K. El-lgili, S.A. El-Maksoud, Correlations between properties and structure in CuO-PbO-B2O3 glasses, J. Phys. D: Appl. Phys. 33 (2000) 2532-2537.

DOI: 10.1088/0022-3727/33/20/303

Google Scholar

[5] E. Metwalli, Copper redox behavior, structure and properties of copper lead borate glasses, J. Non-Cryst. Solids 317 (2003) 221-230.

DOI: 10.1016/s0022-3093(02)01853-7

Google Scholar

[6] P. Vasantharani, N. Sangeetha, Characterization of lead based binary and ternary glass systems using spectroscopic methods, Int. J. Appl. Phys. 3 (1) (2013) 1-6.

Google Scholar

[7] E.I. Kamitsos, A.P. Patsis, M.A. Karakassides, G.D. Chryssikos, Infrared reflectance spectra of lithium borate glasses, J. Non-Cryst. Solids 126 (1990) 52-67.

DOI: 10.1016/0022-3093(90)91023-k

Google Scholar

[8] E.I. Kamitsos, M.A. Karakassides, G.D. Chryssikos, Vibrational spectra of magnesium-sodium-borate glasses, J. Phys. Chem. 91 (1987) 1073-1079.

DOI: 10.1021/j100289a014

Google Scholar

[9] J. Krogh-Moe, The structure of vitreous and liquid boron oxide, J. Non-Cryst. Solids 1 (1969) 269-284.

DOI: 10.1016/0022-3093(69)90025-8

Google Scholar

[10] W.L. Konijnendijk, J.M. Stevels, Structure of borate and borosilicate glasses by Raman spectroscopy, Mater. Sci. Res. 12 (1978) 259-279.

DOI: 10.1007/978-1-4684-3357-9_11

Google Scholar

[11] W.L. Konijnendijk, J.M. Stevels, The structure of Borate glasses studied by Raman scattering, J. Non-Cryst. Solids 18 (1975) 307-331.

DOI: 10.1016/0022-3093(75)90137-4

Google Scholar

[12] P.J. Bray, M. Leventhal, H.O. Hooper, Nuclear magnetic resonance investigations of the structure of lead borate glasses, Phys. Chem. Glasses, 4 (2) (1963) 47-66.

Google Scholar

[13] M. Leventhal, P.J. Bray, Nuclear magnetic resonance investigations of compounds and glasses in systems PbO-B2O3 and PbO –SiO2, Phys. Chem. Glasses, 6 (4) (1965) 113.

Google Scholar

[14] T. Takaishi, J. Jin, T. Uchino, T. Yoko, Structural study of PbO-B2O3 glasses by X-ray diffraction and 11B MAS NMR Techniques, J. Am. Ceram. Soc. 83.

DOI: 10.1111/j.1151-2916.2000.tb01588.x

Google Scholar

[10] (2000) 2543–2548.

Google Scholar

[15] T. Rouxel, Elastic properties and short to medium range order in glasses, J. Am. Ceram. Soc. 90 (10) (2007) 3019-(2039).

Google Scholar

[16] R.D. Shannon, Revised Effective Ionic Radii and Systematic Studies of Interatomie Distances in Halides and Chaleogenides, Acta Cryst. A32 (5) (1976) 751-767.

DOI: 10.1107/s0567739476001551

Google Scholar

[17] Grüneisen 1st Rule,; p.90 in Physical properties of solid Materials, Edited by C. Zwikker. Willey Interscience, New York, (1954).

Google Scholar

[18] G.R. Anstis, P. Chantikul, B.R. Lawn, D.B. Marshall, A critical evaluation of indentation techniques for measuring fracture toughness: I, Direct crack measurements, J. Am. Ceram. 64 (9) (1981) 533-538.

DOI: 10.1111/j.1151-2916.1981.tb10320.x

Google Scholar