[1]
A. Duran, J. Jurado, J.F. Navarro, Electrical properties of copper phosphate glasses I. DC electrical behavior, J. Non-Cryst. Solids 79 (3) (1986) 333-351.
DOI: 10.1016/0022-3093(86)90232-2
Google Scholar
[2]
I. Kashif, A. Ratep, A.M. Sanad, Optical properties of lithium lead borate glass containing copper oxide for color filter and absorption glass, Opt. Quant. Electron. 47 (2015) 673-684.
DOI: 10.1007/s11082-014-9943-x
Google Scholar
[3]
P.S. Rani, R. Singh, Electrical and magnetic properties of copper tellurite glasses, J. Mater. Sci. 45 (11) (2010) 2868-2873.
DOI: 10.1007/s10853-010-4276-z
Google Scholar
[4]
H. Doweidar, K. El-lgili, S.A. El-Maksoud, Correlations between properties and structure in CuO-PbO-B2O3 glasses, J. Phys. D: Appl. Phys. 33 (2000) 2532-2537.
DOI: 10.1088/0022-3727/33/20/303
Google Scholar
[5]
E. Metwalli, Copper redox behavior, structure and properties of copper lead borate glasses, J. Non-Cryst. Solids 317 (2003) 221-230.
DOI: 10.1016/s0022-3093(02)01853-7
Google Scholar
[6]
P. Vasantharani, N. Sangeetha, Characterization of lead based binary and ternary glass systems using spectroscopic methods, Int. J. Appl. Phys. 3 (1) (2013) 1-6.
Google Scholar
[7]
E.I. Kamitsos, A.P. Patsis, M.A. Karakassides, G.D. Chryssikos, Infrared reflectance spectra of lithium borate glasses, J. Non-Cryst. Solids 126 (1990) 52-67.
DOI: 10.1016/0022-3093(90)91023-k
Google Scholar
[8]
E.I. Kamitsos, M.A. Karakassides, G.D. Chryssikos, Vibrational spectra of magnesium-sodium-borate glasses, J. Phys. Chem. 91 (1987) 1073-1079.
DOI: 10.1021/j100289a014
Google Scholar
[9]
J. Krogh-Moe, The structure of vitreous and liquid boron oxide, J. Non-Cryst. Solids 1 (1969) 269-284.
DOI: 10.1016/0022-3093(69)90025-8
Google Scholar
[10]
W.L. Konijnendijk, J.M. Stevels, Structure of borate and borosilicate glasses by Raman spectroscopy, Mater. Sci. Res. 12 (1978) 259-279.
DOI: 10.1007/978-1-4684-3357-9_11
Google Scholar
[11]
W.L. Konijnendijk, J.M. Stevels, The structure of Borate glasses studied by Raman scattering, J. Non-Cryst. Solids 18 (1975) 307-331.
DOI: 10.1016/0022-3093(75)90137-4
Google Scholar
[12]
P.J. Bray, M. Leventhal, H.O. Hooper, Nuclear magnetic resonance investigations of the structure of lead borate glasses, Phys. Chem. Glasses, 4 (2) (1963) 47-66.
Google Scholar
[13]
M. Leventhal, P.J. Bray, Nuclear magnetic resonance investigations of compounds and glasses in systems PbO-B2O3 and PbO –SiO2, Phys. Chem. Glasses, 6 (4) (1965) 113.
Google Scholar
[14]
T. Takaishi, J. Jin, T. Uchino, T. Yoko, Structural study of PbO-B2O3 glasses by X-ray diffraction and 11B MAS NMR Techniques, J. Am. Ceram. Soc. 83.
DOI: 10.1111/j.1151-2916.2000.tb01588.x
Google Scholar
[10]
(2000) 2543–2548.
Google Scholar
[15]
T. Rouxel, Elastic properties and short to medium range order in glasses, J. Am. Ceram. Soc. 90 (10) (2007) 3019-(2039).
Google Scholar
[16]
R.D. Shannon, Revised Effective Ionic Radii and Systematic Studies of Interatomie Distances in Halides and Chaleogenides, Acta Cryst. A32 (5) (1976) 751-767.
DOI: 10.1107/s0567739476001551
Google Scholar
[17]
Grüneisen 1st Rule,; p.90 in Physical properties of solid Materials, Edited by C. Zwikker. Willey Interscience, New York, (1954).
Google Scholar
[18]
G.R. Anstis, P. Chantikul, B.R. Lawn, D.B. Marshall, A critical evaluation of indentation techniques for measuring fracture toughness: I, Direct crack measurements, J. Am. Ceram. 64 (9) (1981) 533-538.
DOI: 10.1111/j.1151-2916.1981.tb10320.x
Google Scholar