Development of PEG/PMMA Based Binders for Ti-Metal Injection Moulding

Article Preview

Abstract:

As the world is moving towards green manufacturing, there is an increasing demand for the use of clean and environmentally friendly binder systems in metal injection moulding (MIM) industry. One example of these developed binders is polyethylene glycol (PEG) - polymethyl methacrylate (PMMA) based system. We have systematically evaluated and optimized this binder system, and reported some interesting new results. In this article, we reported the effect of PEG molecular weight on rheological properties of the feedstock and its water debinding behaviour. We also investigated the effects of different surfactants on MIM feedstock rheological and mechanical properties, and identified a potential surfactant that enhances compatibility between the binder components and metal powders. Furthermore, we reported an interesting problem – ‘voids formation’, which is associated with PEG crystallization. To minimize this void formation a crystallization inhibitor is incorporated in the PEG/PMMA system, thereby eliminating the void formation while maintaining the clean nature of this system. This paper is concluded with some new thoughts with regard to binder design.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

130-138

Citation:

Online since:

August 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. Wen, P. Cao, B. Gabbitas, D. Zhang, N. Edmonds, Development and design of binder systems for titanium metal injection molding: An Overview, Metallurgical and Materials Transactions A 44 (2012) 1530-47.

DOI: 10.1007/s11661-012-1485-x

Google Scholar

[2] G. Chen, P. Cao, G. Wen, N. Edmonds, Debinding behaviour of a water soluble PEG/PMMA binder for Ti metal injection moulding, Materials Chemistry and Physics 139 (2013) 557-65.

DOI: 10.1016/j.matchemphys.2013.01.057

Google Scholar

[3] G. Herranz, Control of carbon content in metal injection molding (MIM), in: D.F. Heaney (Editor), Handbook of metal injection molding, Woodhead Publishing, USA, 2012, pp.265-304.

DOI: 10.1533/9780857096234.2.265

Google Scholar

[4] A. T. Sidambe, I. A. Figueroa, H. G. C. Hamilton, I. Todd, Metal injection moulding of CP-Ti components for biomedical applications, Journal of Materials Processing Technology 212 (2012) 1591-97.

DOI: 10.1016/j.jmatprotec.2012.03.001

Google Scholar

[5] A. B. Sulong, N. Muhamad, A. Arifin, K. B. Yong, Optimizing injection parameter of metal injection molding processes using the feedstock of 16 μm stainless steel powder (SS316L), PEG, PMMA and stearic acid, J Appl Sci Res 8 (2012) 2998–3003.

Google Scholar

[6] M. H. I. Ibrahim, N. Muhamad, A. B. Sulong, Murtadhahadi, K. R. Jamaluin, S. Ahmat, N. H. M. Nor, Water atomised stainless steel powder for micro metal injection molding: optimization of rheological properties, In: Malaysian Metallurgical Conference, 2008, UKM, Bangi, Malaysia, Asian Network for Scientific Information.

Google Scholar

[7] M. D. Hayat, G. Wen, M. F. Zulkifli, P. Cao, Effect of PEG molecular weight on rheological properties of Ti-MIM feedstocks and water debinding behaviour, Powder Technology 270 (2015) 296-301.

DOI: 10.1016/j.powtec.2014.10.035

Google Scholar

[8] T. -Y. Chan, S. -T. Lin, Effects of stearic acid on the injection molding of alumina, Journal of American Ceramic Society 78 (1995) 2746-52.

DOI: 10.1111/j.1151-2916.1995.tb08050.x

Google Scholar

[9] Y. -M. Li, X. -Q. Liu, F. -H. Luo, J. -L. Yue, Effects of surfactant on properties of MIM feedstock, Transactions of Nonferrous Metals Society of China 17 (2007) 1-8.

DOI: 10.1016/s1003-6326(07)60039-9

Google Scholar

[10] M. J. Edirisinghe, The effect of processing additives on the properties of a ceramic-polymer formulation, Ceramics International 17(1991) 89-96.

DOI: 10.1016/0272-8842(91)90037-z

Google Scholar

[11] M. D. Hayat, G. Wen, T. Li, P. Cao, Compatibility improvement of Ti-MIM feedstock using liquid surfactant, Journal of Materials Processing Technology 224 (2015) 33-39.

DOI: 10.1016/j.jmatprotec.2015.04.027

Google Scholar

[12] G. B. Bantchev, G. Biresaw, Elastohydrodynamics of farm-based blends comprising amphiphilic oils, in: Surfactant in Tribology, G. Biresaw and K.L. Mittal. (Eds. ), Vol. 3, CRC Press, Taylor & Francis Group: Boca Raton, FL., 2011, pp.266-296.

DOI: 10.1201/b13897-15

Google Scholar

[13] A. T. Sidambe, I. A. Figueroa, H. G. C. Hamilton, I. Todd, Metal injection moulding of Ti-64 components using a water soluble binder, PIM Int. 4 (2010) 54-62.

Google Scholar

[14] M. D. Hayat, T. Li, G. Wen, P. Cao, Suitability of PEG/PMMA-based metal injection moulding feedstock: An experimental study, The International Journal of Advanced Manufacturing Technology 80 (2015) 1665-1671.

DOI: 10.1007/s00170-015-7133-z

Google Scholar

[15] M. D. Hayat, T. Li, P. Cao, Incorporation of PVP into PEG/PMMA based binder system to minimize void nucleation. Materials & Design 87 (2015) 932-938.

DOI: 10.1016/j.matdes.2015.08.131

Google Scholar

[16] J. Lee, Intrinsic adhesion properties of poly(vinyl pyrrolidone) to pharmaceutical materials: humidity effect, Macromol Biosci 5 (2005) 1085-93.

DOI: 10.1002/mabi.200500146

Google Scholar