Powder Metallurgy Ti-6Al-4V Alloy with Wrought-Like Microstructure and Mechanical Properties by Hydrogen Sintering

Article Preview

Abstract:

Hydrogen sintering phase transformation (HSPT) is a low-cost, blended elemental, press and sinter powder metallurgy process. During HSPT, compacts of TiH2 powder are sintered in dynamically controlled partial pressures of hydrogen followed by a vacuum anneal (dehydrogenation). The use of hydrogen in the sintering atmosphere allows phase transformations in the Ti – H system to create an ultra-fine lamellar microstructure in the as-sintered state with mechanical properties that exceed ASTM standards. Additionally, the fine lamellar structure allows for secondary heat treatments to produce wrought-like microstructures. The removal of hydrogen in the dehydrogenation step is critical to prevent hydrogen embrittlement. The kinetics of dehydrogenation are discussed, in which a model for the concentration profile and an empirical equation for maximum hydrogen concentration as a function of time and size are developed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-14

Citation:

Online since:

August 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Sun, Z. Z. Fang, M. Koopman, J. Paramore, and K. S. R. Chandran, An experimental study of the ( Ti – 6Al – 4V )– xH phase diagram using in situ synchrotron XRD and TGA / DSC techniques, Acta Mater., vol. 84, p.29–41, (2015).

DOI: 10.1016/j.actamat.2014.10.045

Google Scholar

[2] P. Sun, Z. Z. Fang, and M. Koopman, A Comparison of Hydrogen Sintering and Phase Transformation (HSPT) Processing with Vacuum Sintering of CP-Ti, Adv. Eng. Mater., no. 10, p. n/a–n/a, Jun. (2013).

DOI: 10.1002/adem.201300017

Google Scholar

[3] Z. Z. Fang, P. Sun, and H. Wang, Hydrogen Sintering of Titanium to Produce High Density Fine Grain Titanium Alloys, Adv. Eng. Mater., vol. 14, no. 6, p.383–387, Jun. (2012).

DOI: 10.1002/adem.201100269

Google Scholar

[4] P. Sun, Z. Z. Fang, M. Koopman, Y. Xia, J. Paramore, K. S. Ravi Chandran, Y. Ren, and J. Lu, Phase Transformations and Formation of Ultra-Fine Microstructure During Hydrogen Sintering and Phase Transformation (HSPT) Processing of Ti-6Al-4V, Metall. Mater. Trans. A, Sep. (2015).

DOI: 10.1007/s11661-015-3141-8

Google Scholar

[5] J. D. Paramore, Z. Z. Fang, P. Sun, M. Koopman, K. S. R. Chandran, and M. Dunstan, A powder metallurgy method for manufacturing Ti-6Al-4V with wrought-like microstructures and mechanical properties via hydrogen sintering and phase transformation ( HSPT ), Scr. Mater., vol. 107, p.103–106, (2015).

DOI: 10.1016/j.scriptamat.2015.05.032

Google Scholar

[6] F. Cao, K. S. R. Chandran, P. Kumar, P. Sun, M. Koopman, and Z. Z. Fang, Improved fatigue performance of PM Ti-6Al-4V alloy processed by hydrogen sintering and phase transformation of TiH2 powders, in TMS Ti 2015, (2015).

DOI: 10.1002/9781119296126.ch247

Google Scholar

[7] M. Qian and F. H. Froes, Eds., Titanium Powder Metallurgy: Science, Technology and Applications. Elsevier Science, (2015).

Google Scholar

[8] A. D. Hartman, S. J. Gerdemann, and J. S. Hansen, Producing lower-cost titanium for automotive applications, Jom, vol. 50, no. 9, p.16–19, (1998).

DOI: 10.1007/s11837-998-0408-1

Google Scholar

[9] D. Eylon, F. H. (Sam) Froes, and S. Abkowitz, Powder Metallurgy Technolgies and Applications, in ASM Handbook, Vol. 7, ASM, 1998, p.874–886.

Google Scholar

[10] Z. Zak Fang and P. Sun, Pathways to Optimize Performance/Cost Ratio of Powder Metallurgy Titanium – A Perspective, Key Eng. Mater., vol. 520, p.15–23, Aug. (2012).

DOI: 10.4028/www.scientific.net/kem.520.15

Google Scholar

[11] J. Greenspan, F. J. Rizzitano, and E. Scala, Titanium Powder Metallurgy By Decomposition Sintering of the Hydride, Titanium, Sci. Technol. Proc. Second Int. Conf., vol. 1, p.365–379, (1973).

DOI: 10.1007/978-1-4757-1346-6_28

Google Scholar

[12] O. M. Ivasishin, D. G. Savvakin, F. Froes, V. C. Mokson, and K. a. Bondareva, SYNTHESIS OF ALLOY Ti-6Al-4V WITH LOW RESIDUAL POROSITY BY A POWDER METALLURGY METHOD, Powder Metall. Met. Ceram., vol. 41, no. 7–8, p.382–390, (2002).

DOI: 10.1023/a:1021117126537

Google Scholar

[13] O. M. Ivasishin, D. G. Savvakin, V. S. Moxson, K. a. Bondareva, and F. H. S. A. M. Froes, Titanium Powder Metallurgy for Automotive Components., Material Technology, (2002).

DOI: 10.1002/9781118788028.ch14

Google Scholar

[14] ASTM Standard B348-10 Standard Specification for Titanium and Titanium Alloy Bars and Billets, West Conshohocken: ASTM International, (2010).

Google Scholar

[15] M. J. Donachie, Titanium: A Technical Guide, 2nd Edition. ASM International, (2000).

Google Scholar

[16] R. M. Barrer, Diffusion in and Through Solids. London: Bentley House: Cambridge University Press, (1941).

Google Scholar

[17] J. Crank, The Mathematics of Diffusion, 2nd ed. Oxford: Clarendon Press, (1975).

Google Scholar

[18] R. J. Wasilewski and G. L. Kehl, Diffusion of Hydrogen in Titanium, Metallurgia, vol. 50, no. November, p.225–230, (1954).

Google Scholar

[19] T. P. Papazoglou and M. T. Hepworth, The Diffusion of Hydrogen in Titanium, Trans. Metall. Soc. AIME, vol. 242, no. April, p.682–685, (1968).

Google Scholar