[1]
G.H. Hsiue, Y.L. Liu, and H.H. Liao, Flame-retardant epoxy resins: An approach from organic–inorganic hybrid nanocomposites, J. Polym. Sci. Polym. Chem. 39 (2001) 986-996.
DOI: 10.1002/1099-0518(20010401)39:7<986::aid-pola1074>3.0.co;2-w
Google Scholar
[2]
L. -P. Gao, D. -Y. Wang, Y. -Z. Wang, J. -S. Wang, and B. Yang, A flame-retardant epoxy resin based on a reactive phosphorus-containing monomer of DODPP and its thermal and flame-retardant properties, Polym. Degrad. Stabil. 93 (2008) 1308-1315.
DOI: 10.1016/j.polymdegradstab.2008.04.004
Google Scholar
[3]
P.M. Hergenrother, C.M. Thompson, J.G. Smith, J.W. Connell, J.A. Hinkley, R.E. Lyon, and R. Moulton, Flame retardant aircraft epoxy resins containing phosphorus, Polymer 46 (2005) 5012-5024.
DOI: 10.1016/j.polymer.2005.04.025
Google Scholar
[4]
S. -Y. Lu, and I. Hamerton, Recent developments in the chemistry of halogen-free flame retardant polymers, Prog. Polym. Sci. 27 (2002) 1661-1712.
DOI: 10.1016/s0079-6700(02)00018-7
Google Scholar
[5]
M. Alaee, P. Arias, A. Sjödin, and Å. Bergman, An overview of commercially used brominated flame retardants, their applications, their use patterns in different countries/regions and possible modes of release, Environ. Int. 29 (2003) 683-689.
DOI: 10.1016/s0160-4120(03)00121-1
Google Scholar
[6]
A. Toldy, N. Toth, P. Anna, G. Marosi, Synthesis of phosphorus-based flame retardant systems and their use in an epoxy resin, Polym. Degrad. Stabil. 91 (2006) 585-592.
DOI: 10.1016/j.polymdegradstab.2005.02.025
Google Scholar
[7]
N.M. Neisius, M. Lutz, D. Rentsch, P. Hemberger, S. Gaan, Synthesis of DOPO-based phosphonamidates and their thermal properties, Ind. Eng. Chem. Res. 53 (2014) 2889-2896.
DOI: 10.1021/ie403677k
Google Scholar
[8]
X. Wang, Y. Hu, L. Song, W. Xing, H. Lu, P. Lv, G. Jie, Flame retardancy and thermal degradation mechanism of epoxy resin composites based on a DOPO substituted organophosphorus oligomer, Polymer 51 (2010) 2435-2445.
DOI: 10.1016/j.polymer.2010.03.053
Google Scholar
[9]
B. Li, M. Xu, Effect of a novel charring–foaming agent on flame retardancy and thermal degradation of intumescent flame retardant polypropylene, Polym. Degrad. Stabil. 91 (2006) 1380-1386.
DOI: 10.1016/j.polymdegradstab.2005.07.020
Google Scholar
[10]
S.V. Levchik, E.D. Weil, Flame retardancy of thermoplastic polyesters—a review of the recent literature, Polym. Int. 54 (2005) 11-35.
DOI: 10.1002/pi.1663
Google Scholar
[11]
Y.L. Liu, Flame-retardant epoxy resins from novel phosphorus-containing novolac, Polymer 42 (2001) 3445-3454.
DOI: 10.1016/s0032-3861(00)00717-5
Google Scholar
[12]
K.A. Salmeia, S. Gaan, An overview of some recent advances in DOPO-derivatives: Chemistry and flame retardant applications, Polym. Degrad. Stabil. 113 (2015) 119-134.
DOI: 10.1016/j.polymdegradstab.2014.12.014
Google Scholar
[13]
C.H. Lin, S.X. Cai, C.H. Lin, Flame-retardant epoxy resins with high glass-transition temperatures. II. Using a novel hexafunctional curing agent: 9, 10-dihydro-9-oxa-10-phosphaphenanthrene 10-yl-tris (4-aminophenyl) methane, J. Polym. Sci. Polym. Chem. 43 (2005).
DOI: 10.1002/pola.21072
Google Scholar
[14]
Y.L. Liu, Epoxy resins from novel monomers with a bis-(9, 10-dihydro-9-oxa-10-oxide-10-phosphaphenanthrene-10-yl-) substituent, J. Polym. Sci. Polym. Chem. 40 (2002) 359-368.
DOI: 10.1002/pola.10125
Google Scholar
[15]
X. Wang, L. Song, W. Xing, H. Lu, Y. Hu, A effective flame retardant for epoxy resins based on poly (DOPO substituted dihydroxyl phenyl pentaerythritol diphosphonate), Mater. Chem. Phys. 125 (2011) 536-541.
DOI: 10.1016/j.matchemphys.2010.10.020
Google Scholar
[16]
S. Gaan, S. Liang, H. Mispreuve, H. Perler, R. Naescher, M. Neisius, Flame retardant flexible polyurethane foams from novel DOPO-phosphonamidate additives, Polym. Degrad. Stabil. 113 (2015) 180-188.
DOI: 10.1016/j.polymdegradstab.2015.01.007
Google Scholar
[17]
S. Liang, M. Neisius, H. Mispreuve, R. Naescher, S. Gaan, Flame retardancy and thermal decomposition of flexible polyurethane foams: Structural influence of organophosphorus compounds, Polym. Degrad. Stabil. 97 (2012) 2428-2440.
DOI: 10.1016/j.polymdegradstab.2012.07.019
Google Scholar
[18]
P. Kannan, S. Murugavel, Studies on photocrosslinkable-cum-flame retardant poly (benzylidene phosphoramide ester) s, J. Polym. Sci. Polym. Chem. 37 (1999) 3285-3291.
DOI: 10.1002/(sici)1099-0518(19990815)37:16<3285::aid-pola26>3.0.co;2-l
Google Scholar
[19]
Q. Tai, Y. Hu, R.K. Yuen, L. Song, H. Lu, Synthesis, structure–property relationships of polyphosphoramides with high char residues, J. Mater. Chem. 21 (2011) 6621-6627.
DOI: 10.1039/c0jm03959d
Google Scholar
[20]
S. Gaan, G. Sun, K. Hutches, M.H. Engelhard, Effect of nitrogen additives on flame retardant action of tributyl phosphate: phosphorus–nitrogen synergism, Polym. Degrad. Stabil. 93 (2008) 99-108.
DOI: 10.1016/j.polymdegradstab.2007.10.013
Google Scholar
[21]
J. Ding, and W. Shi, Thermal degradation and flame retardancy of hexaacrylated/hexaethoxyl cyclophosphazene and their blends with epoxy acrylate, Polym. Degrad. Stabil. 84 (2004) 159-165.
DOI: 10.1016/j.polymdegradstab.2003.10.006
Google Scholar
[22]
G. -A. Wang, W. -M. Cheng, Y. -L. Tu, C. -C. Wang, and C. -Y. Chen, Characterizations of a new flame-retardant polymer, Polym. Degrad. Stabil. 91 (2006) 3344-3353.
DOI: 10.1016/j.polymdegradstab.2006.06.001
Google Scholar