Synthesis, Structure-Property Relationships of DOPO-Phosphonamidates and their Flame Retardant Application

Article Preview

Abstract:

Three bis-9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO)-phosphonamidates were successfully synthesized and well characterized. The influence of these DOPO-phosphonamidates on fire performance of epoxy resin was comparatively investigated. UL-94 tests results of various EP formulations indicated that DOPO-phosphonamidates exhibited superior fire performance. The EP composite containing extremely low loading of PiP-DOPO (0.5 wt% P) may pass the UL-94 V-0 rating, while EDA-DOPO and DDM-DOPO made the EP pass the V-1 rating. Thermal degradation results of the DOPO-phosphonamidate indicated the higher thermal stability with the initial degradation temperature over 340 °C under nitrogen. Moreover, only a very small residue was observed at 800 °C for DOPO-phosphonamidates and all EP formulations under air and nitrogen, indicating the limited condensed phase interaction. DDM-DOPO with richer aromatic structures presented the highest thermal stability and left more char residues. Large amount of gas products during the combustion of PiP-DOPO rapidly released in a short time, promoting flame inhibition, which may explain its superior flame retardant efficacy among all the DOPO-phosphonamidates investigated in this study.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

102-113

Citation:

Online since:

September 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G.H. Hsiue, Y.L. Liu, and H.H. Liao, Flame-retardant epoxy resins: An approach from organic–inorganic hybrid nanocomposites, J. Polym. Sci. Polym. Chem. 39 (2001) 986-996.

DOI: 10.1002/1099-0518(20010401)39:7<986::aid-pola1074>3.0.co;2-w

Google Scholar

[2] L. -P. Gao, D. -Y. Wang, Y. -Z. Wang, J. -S. Wang, and B. Yang, A flame-retardant epoxy resin based on a reactive phosphorus-containing monomer of DODPP and its thermal and flame-retardant properties, Polym. Degrad. Stabil. 93 (2008) 1308-1315.

DOI: 10.1016/j.polymdegradstab.2008.04.004

Google Scholar

[3] P.M. Hergenrother, C.M. Thompson, J.G. Smith, J.W. Connell, J.A. Hinkley, R.E. Lyon, and R. Moulton, Flame retardant aircraft epoxy resins containing phosphorus, Polymer 46 (2005) 5012-5024.

DOI: 10.1016/j.polymer.2005.04.025

Google Scholar

[4] S. -Y. Lu, and I. Hamerton, Recent developments in the chemistry of halogen-free flame retardant polymers, Prog. Polym. Sci. 27 (2002) 1661-1712.

DOI: 10.1016/s0079-6700(02)00018-7

Google Scholar

[5] M. Alaee, P. Arias, A. Sjödin, and Å. Bergman, An overview of commercially used brominated flame retardants, their applications, their use patterns in different countries/regions and possible modes of release, Environ. Int. 29 (2003) 683-689.

DOI: 10.1016/s0160-4120(03)00121-1

Google Scholar

[6] A. Toldy, N. Toth, P. Anna, G. Marosi, Synthesis of phosphorus-based flame retardant systems and their use in an epoxy resin, Polym. Degrad. Stabil. 91 (2006) 585-592.

DOI: 10.1016/j.polymdegradstab.2005.02.025

Google Scholar

[7] N.M. Neisius, M. Lutz, D. Rentsch, P. Hemberger, S. Gaan, Synthesis of DOPO-based phosphonamidates and their thermal properties, Ind. Eng. Chem. Res. 53 (2014) 2889-2896.

DOI: 10.1021/ie403677k

Google Scholar

[8] X. Wang, Y. Hu, L. Song, W. Xing, H. Lu, P. Lv, G. Jie, Flame retardancy and thermal degradation mechanism of epoxy resin composites based on a DOPO substituted organophosphorus oligomer, Polymer 51 (2010) 2435-2445.

DOI: 10.1016/j.polymer.2010.03.053

Google Scholar

[9] B. Li, M. Xu, Effect of a novel charring–foaming agent on flame retardancy and thermal degradation of intumescent flame retardant polypropylene, Polym. Degrad. Stabil. 91 (2006) 1380-1386.

DOI: 10.1016/j.polymdegradstab.2005.07.020

Google Scholar

[10] S.V. Levchik, E.D. Weil, Flame retardancy of thermoplastic polyesters—a review of the recent literature, Polym. Int. 54 (2005) 11-35.

DOI: 10.1002/pi.1663

Google Scholar

[11] Y.L. Liu, Flame-retardant epoxy resins from novel phosphorus-containing novolac, Polymer 42 (2001) 3445-3454.

DOI: 10.1016/s0032-3861(00)00717-5

Google Scholar

[12] K.A. Salmeia, S. Gaan, An overview of some recent advances in DOPO-derivatives: Chemistry and flame retardant applications, Polym. Degrad. Stabil. 113 (2015) 119-134.

DOI: 10.1016/j.polymdegradstab.2014.12.014

Google Scholar

[13] C.H. Lin, S.X. Cai, C.H. Lin, Flame-retardant epoxy resins with high glass-transition temperatures. II. Using a novel hexafunctional curing agent: 9, 10-dihydro-9-oxa-10-phosphaphenanthrene 10-yl-tris (4-aminophenyl) methane, J. Polym. Sci. Polym. Chem. 43 (2005).

DOI: 10.1002/pola.21072

Google Scholar

[14] Y.L. Liu, Epoxy resins from novel monomers with a bis-(9, 10-dihydro-9-oxa-10-oxide-10-phosphaphenanthrene-10-yl-) substituent, J. Polym. Sci. Polym. Chem. 40 (2002) 359-368.

DOI: 10.1002/pola.10125

Google Scholar

[15] X. Wang, L. Song, W. Xing, H. Lu, Y. Hu, A effective flame retardant for epoxy resins based on poly (DOPO substituted dihydroxyl phenyl pentaerythritol diphosphonate), Mater. Chem. Phys. 125 (2011) 536-541.

DOI: 10.1016/j.matchemphys.2010.10.020

Google Scholar

[16] S. Gaan, S. Liang, H. Mispreuve, H. Perler, R. Naescher, M. Neisius, Flame retardant flexible polyurethane foams from novel DOPO-phosphonamidate additives, Polym. Degrad. Stabil. 113 (2015) 180-188.

DOI: 10.1016/j.polymdegradstab.2015.01.007

Google Scholar

[17] S. Liang, M. Neisius, H. Mispreuve, R. Naescher, S. Gaan, Flame retardancy and thermal decomposition of flexible polyurethane foams: Structural influence of organophosphorus compounds, Polym. Degrad. Stabil. 97 (2012) 2428-2440.

DOI: 10.1016/j.polymdegradstab.2012.07.019

Google Scholar

[18] P. Kannan, S. Murugavel, Studies on photocrosslinkable-cum-flame retardant poly (benzylidene phosphoramide ester) s, J. Polym. Sci. Polym. Chem. 37 (1999) 3285-3291.

DOI: 10.1002/(sici)1099-0518(19990815)37:16<3285::aid-pola26>3.0.co;2-l

Google Scholar

[19] Q. Tai, Y. Hu, R.K. Yuen, L. Song, H. Lu, Synthesis, structure–property relationships of polyphosphoramides with high char residues, J. Mater. Chem. 21 (2011) 6621-6627.

DOI: 10.1039/c0jm03959d

Google Scholar

[20] S. Gaan, G. Sun, K. Hutches, M.H. Engelhard, Effect of nitrogen additives on flame retardant action of tributyl phosphate: phosphorus–nitrogen synergism, Polym. Degrad. Stabil. 93 (2008) 99-108.

DOI: 10.1016/j.polymdegradstab.2007.10.013

Google Scholar

[21] J. Ding, and W. Shi, Thermal degradation and flame retardancy of hexaacrylated/hexaethoxyl cyclophosphazene and their blends with epoxy acrylate, Polym. Degrad. Stabil. 84 (2004) 159-165.

DOI: 10.1016/j.polymdegradstab.2003.10.006

Google Scholar

[22] G. -A. Wang, W. -M. Cheng, Y. -L. Tu, C. -C. Wang, and C. -Y. Chen, Characterizations of a new flame-retardant polymer, Polym. Degrad. Stabil. 91 (2006) 3344-3353.

DOI: 10.1016/j.polymdegradstab.2006.06.001

Google Scholar