Properties of a Sandwich Thermal Insulation Composite with Silica Aerogel

Article Preview

Abstract:

Properties of a new type of sandwich composite based on magnesium board, silica aerogel thermal insulation layer, and water vapour barrier are experimentally analysed in the paper. For the basic characterization of the studied material, bulk density, matrix density, and total open porosity are measured. Among the thermal properties, thermal conductivity, thermal diffusivity, and volumetric heat capacity are accessed. Water vapour transmission properties are determined using the dry-cup and wet-cup arrangements of the cup method. In order to describe the liquid moisture transport, water absorption coefficient and apparent moisture diffusivity are calculated based on the data obtained from the free water intake experiment based on the sorptivity concept. Ability of the tested material to accumulate water vapour is described by the sorption and desorption isotherms measured using a dynamic vapour sorption device. Mechanical resistivity of the tested composite is characterized by its compressive and flexural strength. Additionally, in order to get information on material performance at high temperature exposure, simultaneous TG and DSC analysis is done. The obtained data gives clear evidence on sandwich performance and proved its applicability in interior thermal insulation systems.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

114-121

Citation:

Online since:

September 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E. Vereecken, L. Van Gelder, H. Janssen, Interior insulation for wall retrofitting - A probabilistic analysis of energy savings and hygrothermal risks, S. Roels, Energ. Buildings 89 (2015) 231-244.

DOI: 10.1016/j.enbuild.2014.12.031

Google Scholar

[2] K. Häupl, K. Jurk, H. Petzold, Inside thermal insulation of historical facades, Research in Building Physics, A.A. Balkema Publishers, Lisse, 2003, pp.463-469.

DOI: 10.1201/9781003078852-64

Google Scholar

[3] J. Straube, C. Schumacher, Interior insulation retrofits of load-bearing masonry walls in cold climates, J. Green Build. 2 (2007) 42-50.

DOI: 10.3992/jgb.2.2.42

Google Scholar

[4] E. Vereecken, S. Roels, Capillary active interior insulation systems for wall retrofitting, Mater. Struct. 48 (2015) 3009-3021.

DOI: 10.1617/s11527-014-0373-9

Google Scholar

[5] G. Wei, Y. Liu, X. Zhang, X. Du, Radiative heat transfer study on silica aerogel and its composite insulation materials, J. Non-crystal. Solids 362 (2015) 231-236.

DOI: 10.1016/j.jnoncrysol.2012.11.041

Google Scholar

[6] Z. Pavlík, A. Trník, J. Ondruška, M. Keppert, M., Pavlíková, P. Volfová, R. Černý, Apparent thermal properties of phase-change materials: An analysis using differential scanning calorimetry and impulse method, Int. J. Thermophys. 34 (2013).

DOI: 10.1007/s10765-012-1169-1

Google Scholar

[7] J. Fořt, Z. Pavlík, J. Žumár, M. Pavlíková, R. Černý, Effect of temperature on water vapor transport properties, J. Build. Phys. 38 (2014) 156-169.

DOI: 10.1177/1744259114532612

Google Scholar

[8] S.A. Al-Ajlan, Measurements of thermal properties of insulation materials using a graphite matrix, Appl. Therm. Eng. 26 (2006) 2184-2191.

Google Scholar

[9] M. Jerman, R. Černý, Effect of moisture content on heat and moisture transport and storage properties of thermal insulation materials, Energ. Buildings 53 (2012) 39-46.

DOI: 10.1016/j.enbuild.2012.07.002

Google Scholar

[10] K. Iragashi, K. Tajiri, Y. Tai, S. Tanemura, Preparation of gold cluster/silica nanocomposite aerogel via spontaneous wet-gel formation, Adv. Mater. 26 (1993) 1611-1614.

DOI: 10.1002/1521-4095(200111)13:21<1611::aid-adma1611>3.0.co;2-v

Google Scholar

[11] J.P. Nayak, J. Bera, Preparation of silica aerogel by ambient pressure drying process using rice husk ash as raw material, Trans. Indian Ceram. Soc. 68 (2009) 91-94.

DOI: 10.1080/0371750x.2009.11082163

Google Scholar

[12] F. He, H. Zhao, X. Qu, C. Zhang, W. Qiu, Modified aging process for silica aerogel, Mater. Process. Technol. 209 (2009) 1621-1626.

DOI: 10.1016/j.jmatprotec.2008.04.009

Google Scholar

[13] T. Xie, Y. -l. He, Z. -x. Tong, W. -x. Yan, X. -q. Xie, Transient heat transfer characteristics of silica aerogel insulating material considering its endothermic reaction, Int. J. Heat Mass Tran. 68 (2014) 633-640.

DOI: 10.1016/j.ijheatmasstransfer.2013.09.074

Google Scholar

[14] H. Ch. Eom, H. Park, H. Yoon, Preparation of anhydrous magnesium chloride from ammonium magnesium chloride hexahydrate, Adv. Powder Technol. 21 (2010) 125-130.

DOI: 10.1016/j.apt.2010.01.003

Google Scholar