Application of Metamaterial Absorber in Antenna Stealth

Article Preview

Abstract:

In order to improve the stealth performance of antenna, a metamaterial absorber with high absorption, polarization-insensitive and wide angle based on the electromagnetic resonance is designed. Using of ultra-thin characteristic of absorber, they are attached to the microstrip antenna to reduce its radar cross section. The simulation results show that the new microstrip antenna’s radiation performance remains unchanged compared with conventional microstrip antenna and it has obvious RCS reduction in its working band. While the maximum reduction can reach 28dB at working frequency, and the in-band reduction of antenna is above 3dB. This indicates that the absorber can be used for antennas’ in-band stealth.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

125-130

Citation:

Online since:

September 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] V. G. Veselago, The electrodynamics of substances with simultaneously negative values of and, Soviet Physics Uspekhi, 10(4), (1968), 509-514.

DOI: 10.1070/pu1968v010n04abeh003699

Google Scholar

[2] R. A. Shelby, D. R. Smith, S. Schultz, Experimental verification of a negative index of refraction, Science, 292(5514), (2001), 77-79.

DOI: 10.1126/science.1058847

Google Scholar

[3] J. B. Pendry, Negative refraction makes a perfect lens, Physical Review Letters, 85(18), (2000), 3966-3969.

DOI: 10.1103/physrevlett.85.3966

Google Scholar

[4] D. Schurig, J. J. Mock, B. J. Justice, Metamaterial electromagnetic cloak at microwave frequencies, Science, 314(5801), (2006), 977-980.

DOI: 10.1126/science.1133628

Google Scholar

[5] N. I. Landy, S. Sajuyigbe, J. J. Mock, A perfect metamaterial absorber, Physical Review Letters, 100, (2008).

DOI: 10.1103/physrevlett.100.207402

Google Scholar

[6] N. I. Landy, C. M. Bingham, A. C. Strikwerda, Design, theory and measurement of a polarization-insensitive absorber for terahertz imaging, Physical Review B, 79, (2009).

DOI: 10.1103/physrevb.79.125104

Google Scholar

[7] Y. Ma, Q. Chen, J. Grant, A terahertz polarization insensitive dual band metamaterial absorber, Optics Letters, 36, (2011), 945-947.

DOI: 10.1364/ol.36.000945

Google Scholar

[8] J. Hao, J. Wang, X. Liu, High performance optical absorber based on a plasmonic metamaterial, Applied Physics Letters, 96, (2010).

Google Scholar

[9] L. Li, Y. Yang, C. Liang, A wide-angle polarization-insensitive ultra-thin metamaterial absorber with three resonant modes, Journal of Applied Physics, 110, (2011).

DOI: 10.1063/1.3638118

Google Scholar

[10] H. Tao, C. M. Bingham, A. C. Strikwerda, Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization, Physical Review B, 78, (2008).

DOI: 10.1103/physrevb.78.241103

Google Scholar

[11] J. Grant, Y. Ma, S. Saha, Polarization insensitive, broadband terahertz metamaterial absorber, Optics Letters, 36, (2011), 3476-3478.

DOI: 10.1364/ol.36.003476

Google Scholar

[12] J. Zhu, Z. Ma, W. Sun, Ultra-broadband terahertz metamaterial absorber, Applied Physical Letters, 105, (2014).

Google Scholar

[13] B. Ni, X. S. Chen, L. J. Huang, A dual-band polarization insensitive metamaterial absorber with split ring resonator, Optical and Quantum Electronics, 45, (2013), 747-753.

DOI: 10.1007/s11082-013-9676-2

Google Scholar

[14] J. Zhong, Y. Huang, G. Wen, Dual-band negative permittivity metamaterial based on cross circular loop resonator with shorting stubs, Antennas and Wireless Propagation Letters, 11, (2012), 803-806.

DOI: 10.1109/lawp.2012.2208172

Google Scholar

[15] Z. Lu, M. Zhao, Z. Yang, Helical Metamaterical absorbers: broadband and polarization-independent in optical region, Journal of Lightwave Technology, 31(16), (2013), 2762-2768.

DOI: 10.1109/jlt.2013.2272632

Google Scholar