[1]
G. Duggan, Usage of ISO 5660 data in UK railway standards and fire safety cases, A One-Day Conference on Fire Hazards, Testing, Materials and Products. Shrewsbury, pp.1-8, 1997, Rapra Technology Ltd. UK.
Google Scholar
[2]
B. H. Chiam, Numerical simulation of a metro train fire, M.S. thesis, Department of Civil Engineering, University of Canterbury, Christchurch, New Zealand, (2005).
Google Scholar
[3]
H. Ingason, M. Kumm, D. Nilsson, A. Lönnermark, A. Claesson, Y. Z. Li et al, The METRO project, final report, Technical Report: SiST 2012: 8, Sweden: Mälardalen University Press, (2012).
Google Scholar
[4]
R. Chen, S. Lu, C. Li, Y. Ding, B. Zhang, S. Lo, Correlation analysis of heat flux and cone calorimeter test data of commercial flame-retardant ethylene-propylene-diene monomer (EPDM) rubber, Journal of Thermal Analysis and Calorimetry, 2015. Available: http: /link. springer. com/article/10. 1007/s10973-015-4900-x.
DOI: 10.1007/s10973-015-4900-x
Google Scholar
[5]
R. Chen, S. Lu, C. Li, M. Li, S. Lo, Characterization of thermal decomposition behavior of commercial flame-retardant ethylene-propylene-diene monomer (EPDM) rubber, Journal of Thermal Analysis and Calorimetry, 2015. Available: http: /link. springer. com/article/ 10. 1007/s10973-015-4701-2#page-1.
DOI: 10.1007/s10973-015-4701-2
Google Scholar
[6]
A. Mouritz, Z. Mathys, Post-fire mechanical properties of marine polymer composites, Composite Structures, vol. 47, pp.643-653, (1999).
DOI: 10.1016/s0263-8223(00)00043-x
Google Scholar
[7]
A. Mouritz, Z. Mathys, Post-fire mechanical properties of glass-reinforced polyester composites, Composites Science and Technology, vol. 64, pp.475-490, (2001).
DOI: 10.1016/s0266-3538(00)00204-9
Google Scholar
[8]
A. Mouritz, Post-fire flexural properties of fibre-reinforced polyester, epoxy and phenolic composites, Journal of Materials Science, vol. 37, pp.1377-1386, (2002).
Google Scholar
[9]
W. An, L. Jiang, J. Sun, K. Liew, Correlation analysis of sample thickness, heat flux, and cone calorimetry test data of polystyrene foam, Journal of Thermal and Analysis and Calorimetry, vol. 119, pp.229-238, (2015).
DOI: 10.1007/s10973-014-4165-9
Google Scholar
[10]
X. Chen, S. Lu, C. Li, J. Zhang, K. Liew, Experimental study on ignition and combustion characteristics of typical oils, Fire and Materials, vol. 38, pp.409-417, (2014).
DOI: 10.1002/fam.2191
Google Scholar
[11]
M. B. Avila, The effect of resin type and glass content on the fire engineering properties of typical FRP composites, M.S. thesis, Department of Fire Protection Engineering, Worcester polytechnic institute, (2007).
Google Scholar
[12]
G. Ramsay, V. Dowling, B. McKechnie, J. Leonard, Methods For Assessing The Fire Performance Of Phenolic Resins And Composites, Fire Safety Science, vol. 2, pp.355-366, (1995).
Google Scholar
[13]
Reaction-to-fire tests-heat release, smoke production and mass loss rate-part 1: heat release rate (cone calorimeter method), ISO Standard 5660-1, 2nd ed., Geneva: International Organization for Standardization, (2002).
DOI: 10.3403/30255889
Google Scholar
[14]
Reaction to Fire-Mass Loss Measurement, ISO Standard 17554, Geneva: International Organization for Standardization, (1998).
Google Scholar
[15]
J. Luche, T. Rogaume, F. Richard, E. Guillaume, Characterization of thermal properties and analysis of combustion behavior of PMMA in a cone calorimeter, Fire Safety Journal, vol. 46, pp.451-461, (2011).
DOI: 10.1016/j.firesaf.2011.07.005
Google Scholar
[16]
L. Shi, M. Chew, Fire behaviors of polymers under autoignition conditions in a cone calorimeter, Fire Safety Journal, vol. 61, pp.243-253, (2013).
DOI: 10.1016/j.firesaf.2013.09.021
Google Scholar
[17]
J. Luche, E. Mathis, T. Rogaume, F. Richard, E. Guillaume, High-density polyethylene thermal degradation and gaseous compound evolution in a cone calorimeter, Fire Safety Journal, vol. 54, pp.24-35, (2012).
DOI: 10.1016/j.firesaf.2012.08.002
Google Scholar
[18]
M. Delichatsios, B. Paroz, A. Bhargava, Flammability properties for charring materials, " Fire Safety Journal, vol. 38, pp.219-228, (2003).
DOI: 10.1016/s0379-7112(02)00080-2
Google Scholar
[19]
R. Chen, S. Lu, B. Zhang, C. Li, S. Lo, Correlation of rate of gas temperature rise with mass loss rate in a ceiling vented compartment, Chinese Science Bulletin, vol. 59, pp.4559-4567, (2014).
DOI: 10.1007/s11434-014-0479-z
Google Scholar
[20]
J. Quintiere, A theoretical basis for flammability properties, Fire and Materials, vol. 30, pp.175-214, (2006).
DOI: 10.1002/fam.905
Google Scholar
[21]
V. Babrauskas, R. D. Peacock, Heat release rate: the single most important variable in fire hazard, Fire Safety Journal, vol. 18, pp.255-272, (1992).
DOI: 10.1016/0379-7112(92)90019-9
Google Scholar