[1]
B.B. Sabir, S. Wild, J. Bai, Metakaolin and calcined clays as pozzolans for concrete: A review, Cement Concrete Comp. 23 (2001) 441-454.
DOI: 10.1016/s0958-9465(00)00092-5
Google Scholar
[2]
IEA (International Energy Agency) statistics, CO2 Emissions from Fuel Combustion highlights, www. iea. org/co2highlights (2010).
DOI: 10.1787/999374fe-en
Google Scholar
[3]
E. Benhelal, G. Zahedi, H. Haslenda, A novel design for green and economical cement manufacturing, J. Clean. Prod. 22 (2012) 60-66.
DOI: 10.1016/j.jclepro.2011.09.019
Google Scholar
[4]
E. Benhelal, G. Zahedi, E. Shamsaei, A. Bahadori, Global strategies and potentials to curb CO2 emissions in cement industry, J. Clean. Prod. 51 (2013) 142-161.
DOI: 10.1016/j.jclepro.2012.10.049
Google Scholar
[5]
B. Lothenbach, K. Scrivener, R.D. Hooten, Supplementary cementitious materials, Cement Concrete Res. 41 (2011) 1244-1256.
DOI: 10.1016/j.cemconres.2010.12.001
Google Scholar
[6]
M. Keppert, J.A. Siddique, Z. Pavlík, R. Černý, Wet-Treated MSWI Fly Ash Used as Supplementary Cementitious Material, Adv. Mater. Sci. Eng., Article ID 842807 (2015).
DOI: 10.1155/2015/842807
Google Scholar
[7]
G.R. de Sensale, Strength development of concrete with rice-husk ash, Cement Concrete Comp. 28 (2006) 158-160.
DOI: 10.1016/j.cemconcomp.2005.09.005
Google Scholar
[8]
Ch.L. Yen, D.H. Tseng, T.T. Lin, Characterization of eco-cement paste produced from waste sludges, Chemosphere 84, 220 (2011).
DOI: 10.1016/j.chemosphere.2011.04.050
Google Scholar
[9]
C. Meyer, The greening of the concrete industry, Cement Concrete Comp. 31, 601 (2009).
Google Scholar
[10]
A.E. Lavat, Trezza, A., Poggi, M., Characterization of ceramic roof tile wastes as pozzolanic admixture, Waste Manage. 29 (2009) 1666-1674.
DOI: 10.1016/j.wasman.2008.10.019
Google Scholar
[11]
V. Rahhal, E. Irassar, C. Castellano, Z. Pavlík, R. Černý, Utilization of ceramic wastes as replacement of portland cements, Construction Materials and Structures (2014) 208-213.
Google Scholar
[12]
J. Pokorný, J. Fořt, M. Pavlíková, J. Studnička, Z. Pavlík, Application of mixed ceramic powder in cement based composites, Adv. Mat. Res. 1054 (2014) 177-181.
DOI: 10.4028/www.scientific.net/amr.1054.177
Google Scholar
[13]
Z. Pavlík, A. Trník, M. Keppert, M. Pavlíková, J. Žumár, R. Černý, Experimental investigation of the properties of lime-based plaster-containing PCM for enhancing the heat-storage capacity of building envelopes, Int. J. Thermophys. 35 (2013).
DOI: 10.1007/s10765-013-1550-8
Google Scholar
[14]
M. Záleská, M. Pavlíková, Z. Pavlík, Classification of a-SiO2 rich materials, Mater. Sci. Forum 824 (2015) 33-38.
DOI: 10.4028/www.scientific.net/msf.824.33
Google Scholar
[15]
Z. Pavlík, M. Keppert, M. Pavlíková, J. Žumár, J. Fořt, R. Černý, Mechanical, hygric, and durability properties of cement mortar with MSWI bottom ash as partial silica sand replacement, Cement Wapno Beton 19 (2014) 67-80.
DOI: 10.2495/arc120121
Google Scholar
[16]
X1 J. Patel, B.K. Shah, P.J. Patel, The Potential Pozzolanic Activity of Different Ceramic Waste Powder as Cement Mortar Component (Strength Activity Index), IJET 9 (2014) 267-271.
DOI: 10.14445/22315381/ijett-v9p253
Google Scholar
[17]
A. Heidari, D. Tavakoli, A study of the mechanical properties of ground ceramic powder concrete incorporating nano-SiO2 particles, Constr. Build. Mater. 38 (2013) 255-264.
DOI: 10.1016/j.conbuildmat.2012.07.110
Google Scholar
[18]
J. Pontes, A. Santos Silva, P. Faria, Evaluation of pozzolanic reactivity of artificial pozzolans, Mater. Sci. Forum 433 (2013) 730-732.
DOI: 10.4028/www.scientific.net/msf.730-732.433
Google Scholar