Hardness and Texture Evolution of Sputtered TiN Thin Films with Different Thicknesses on Ti6Al4V Substrate

Article Preview

Abstract:

In this present work, TiN films with various thicknesses (from 0.3 μm to 2 μm) were deposited by DC reactive magnetron sputtering on Ti6Al4V substrates. The evolution of texture and microstructure were studied by X-ray diffraction and Scanning Electron Microscopy, respectively. The XRD characterization indicates that the preferred texture of TiN films is changed from (111) to (100) with increasing the film thickness. The microstructure characterization shows that their microstructure transform from continuous into columnar with increasing the TiN film thickness. It is considered these results are arised from the change of overall energy including surface energy and strain energy with the film thickness. The hardness of TiN film increases with increasing the film thickness.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

91-94

Citation:

Online since:

September 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Bahri,N. Guermazi, K. Elleuch, M. Urgen: Wear, Vol. 342-343 (2015), p.77.

Google Scholar

[2] L. Vandoni, A. Demir, B. Previtali, N. Lecis and D. Ugues: Materials, Vol. 5 (2012), p.2360.

Google Scholar

[3] X. -L. Shi, L. -L. Xu, M. -L. Munar, K. Ishikawa: Mater. Sci. Eng., C, Vol. 49 (2015) , p.1.

Google Scholar

[4] D. G. Bansal, O. L. Eryilmaz and P. J. Blau: Wear, Vol. 271 (2011) , p. (2006).

Google Scholar

[5] N. Schell, J. Bøttiger, W. Matz and J. Chevallier: Nucl. Instrum. Meth. B, Vol. 199(2003), p.133.

Google Scholar

[6] M. Zhang, J. He: Surf Coat Tech, Vol. 142-144 (2001) , p.125.

Google Scholar

[7] J. Pelleg, L. Z. Zevin and S. Lungo: Thin Solid Films, Vol. 197 (1991) , p.117.

Google Scholar

[8] B. -Y. Jeong: Korean J. Met. Mater., Vol. 50 (2012) , p.867.

Google Scholar

[9] N. Xiao: Dissertation of Northeastern University, (2010), p.25.

Google Scholar

[10] U. C. Oh, Jung Ho Je: J. Mater. Res., Vol. 13(1998) , p.1225.

Google Scholar

[11] W. J. Chou, G. P. Yu and J. H. Huang:Surf. Coat Tech., Vol. 149(2002) , p.7.

Google Scholar

[12] U. C. Oh, Jung Ho Je: J. Appl. Phy., Vol. 74(1993) , p.1692.

Google Scholar

[13] M. I. Jones, I. R. McColl and D. M. Grant:Surf Coat Tech, Vol. 132(2000) , p.143.

Google Scholar

[14] T. Kaizuka, H. Shinriki, N. Takeyasu and T. Ohta:Jpn. J. Appl. Phy., Vol. 33(1994) , p.470.

Google Scholar

[15] W. Ensinger: Nucl. Instrum. Meth. B , Vol. 127/128(1997) , pp.796-808.

Google Scholar

[16] J. H. Huang, K. -W. Lau and G. P. Yu:Surf. Coat Tech., Vol. 191(2005) , p.17.

Google Scholar

[17] C. -H. Ma, J. -H. Huang:Surf. Coat Tech., Vol. 200(2006) , p.3868.

Google Scholar