Mathematical Model of the Influence of Chemisorption Process on Electrophysical Parameters of Nanosized ZnO Films

Article Preview

Abstract:

We have developed a mathematical model of electrophysical and gas sensitive properties of nanosized ZnO film during chemisorption of gas molecules of CO, CO2, CH4, and NO2 on its surface and figured out regularities of influence of thickness of depletion layer of nanosized ZnO films on their electric and gas sensitivity properties. We have determined optimal range of working temperatures and thicknesses of nanosized ZnO films for detecting CO, CO2 CH4, and NO2 with maximum gas sensitivity and selectivity and theoretical investigated gas-sensitivity properties of nanosized ZnO films.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

82-85

Citation:

Online since:

September 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. Korotcenkov, Metal oxides for solid-state gas sensors: What determines our choice?, Materials Science and Engineering B 139 (2007) 1-23.

DOI: 10.1016/j.mseb.2007.01.044

Google Scholar

[2] E. Comini, Metal oxide Nano-crystals for gas sensing, Anal. Chim. Acta. 568 (2006) 28 - 40.

DOI: 10.1016/j.aca.2005.10.069

Google Scholar

[3] O. A. Ageev, A. P. Dostanko, E. G. Zamburg, et. al., Electrical and Optical Properties of Zinc Oxide Films Deposited by the Ion Beam Sputtering of an Oxide Target, Semiconductors 48 (9) (2014) 1274-1279.

DOI: 10.1134/s1063782614090073

Google Scholar

[4] O. A. Ageev, D.A. Golosov, et. al., Researching Influence of IBAD PLD Parameters on Properties of Nanocrystalline ZnO Thin Films, App. Mech. and Mat. 481 (2014) 55-59.

DOI: 10.4028/www.scientific.net/amm.481.55

Google Scholar

[5] O.A. Ageev, E.Y. Gusev, E.G. Zamburg, et. al., Nanocrystalline ZnO Films Grown by PLD for NO2 and NH3 Sensor App. Mech. and Materials 475- 476 (2014) 446-450.

DOI: 10.4028/www.scientific.net/amm.475-476.446

Google Scholar

[6] O.A. Ageev, A.P. Dostanko, E.G. Zamburg, et. al., Effect of the Processes in the Laser Ablation Plume on the Resistivity and Morphology of Nanocrystalline ZnO Films, Phys. of the Sol. St. 57 (2015) 2093-(2098).

DOI: 10.1134/s1063783415100029

Google Scholar

[7] G. Korotcenkov, Gas response control through structural and chemical modification of metal oxide films: state of the art and approaches, Sensors and Actuators B 107 (2005) 209-232.

DOI: 10.1016/j.snb.2004.10.006

Google Scholar

[8] K. Ellmer, Resistivity of polycrystalline zinc oxide: Current status and physical limit, J. Phys. D: Appl. Phys. 34 (2001) 3097-3108.

DOI: 10.1088/0022-3727/34/21/301

Google Scholar

[9] N. Barsan, U. Weimar, Conduction model of metal oxide gas sensors, J. of Electroceramics 7 (2001) 143-167.

Google Scholar

[10] G. Sakai, et. al., Theory of gas-diffusion controlled sensitivity for thin film semiconductor gas sensor, Sensors and Actuators B 80 (2001) 125-131.

DOI: 10.1016/s0925-4005(01)00890-5

Google Scholar

[11] K. Ellmer, A. Klein, B. Rech, Transparent Conductive Zinc Oxide: Basics and Applications in Thin Film Solar Cells, Springer-Verlag: Berlin, Germany, 2008, pp.35-72.

DOI: 10.1007/978-3-540-73612-7

Google Scholar

[12] J.F. Chang, et. al., The effects of thickness and operation temperature on ZnO: Al thin film CO gas sensor, Sensors and Actuators B 84 (2002) 258-264.

DOI: 10.1016/s0925-4005(02)00034-5

Google Scholar